YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Hybrid Pathway to Flexible Power Turbines, Part I: Novel Autoencoder Methods for the Automated Optimization of Thermal Probes and Fast Sparse Data Reconstruction, Enabling Real-Time Thermal Analysis

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 146 ):;issue: 003::page 31020-1
    Author:
    Baker, Mark
    ,
    Rosic, Budimir
    DOI: 10.1115/1.4063581
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The global drive toward renewable energy is imposing challenging operating requirements on power turbines. Flexible load-leveling applications must accept more frequent and demanding start-stop cycles. Full transient analyses are too computationally expensive for real-time simulation across all operating regimes so monitoring relies on sparse physical measurements. Alone, these sparse data lack the fidelity for real-time prediction of a complex thermal field. A new hybrid methodology is proposed, coupling data across a range of fidelities to bridge the limitations in the individual analyses. Combining several fidelity methods in parallel, low-order models, corrected by real-time physical measurements, is calibrated with high-fidelity simulations. The multifaceted hybrid approach enables the real-time speed of low-order analysis at high resolution. This paper series develops the critical enabling features of the hybrid method. Real-time cross-fidelity data transition is fundamental to the hybrid methodology. A novel neural network auto-encoder method is presented, facilitating complex thermal profile reconstruction. Uncovering a compressed latent space, auto-encoders leverage underlying data features for fast simulation. Coupled with a dynamic mask and top-k selection, thermal probe placement can be automatically optimized. The auto-encoder method is demonstrated on a turbine casing, reconstructing over 500 h of transient operation in real-time, whilst reducing the required number of measurements by half.
    • Download: (5.469Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Hybrid Pathway to Flexible Power Turbines, Part I: Novel Autoencoder Methods for the Automated Optimization of Thermal Probes and Fast Sparse Data Reconstruction, Enabling Real-Time Thermal Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295196
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorBaker, Mark
    contributor authorRosic, Budimir
    date accessioned2024-04-24T22:25:39Z
    date available2024-04-24T22:25:39Z
    date copyright12/1/2023 12:00:00 AM
    date issued2023
    identifier issn0742-4795
    identifier othergtp_146_03_031020.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295196
    description abstractThe global drive toward renewable energy is imposing challenging operating requirements on power turbines. Flexible load-leveling applications must accept more frequent and demanding start-stop cycles. Full transient analyses are too computationally expensive for real-time simulation across all operating regimes so monitoring relies on sparse physical measurements. Alone, these sparse data lack the fidelity for real-time prediction of a complex thermal field. A new hybrid methodology is proposed, coupling data across a range of fidelities to bridge the limitations in the individual analyses. Combining several fidelity methods in parallel, low-order models, corrected by real-time physical measurements, is calibrated with high-fidelity simulations. The multifaceted hybrid approach enables the real-time speed of low-order analysis at high resolution. This paper series develops the critical enabling features of the hybrid method. Real-time cross-fidelity data transition is fundamental to the hybrid methodology. A novel neural network auto-encoder method is presented, facilitating complex thermal profile reconstruction. Uncovering a compressed latent space, auto-encoders leverage underlying data features for fast simulation. Coupled with a dynamic mask and top-k selection, thermal probe placement can be automatically optimized. The auto-encoder method is demonstrated on a turbine casing, reconstructing over 500 h of transient operation in real-time, whilst reducing the required number of measurements by half.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Hybrid Pathway to Flexible Power Turbines, Part I: Novel Autoencoder Methods for the Automated Optimization of Thermal Probes and Fast Sparse Data Reconstruction, Enabling Real-Time Thermal Analysis
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4063581
    journal fristpage31020-1
    journal lastpage31020-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian