YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermo-Economic Comparative Study and Multi-Objective Optimization of Supercritical CO2-Based Mixtures Brayton Cycle Combined With Absorption Refrigeration Cycle

    Source: Journal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 008::page 84501-1
    Author:
    Ma, Ya-Nan
    ,
    Hu, Peng
    DOI: 10.1115/1.4062435
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a novel system based on the combination of a supercritical recompression Brayton cycle (SRBC) and LiBr-H2O absorption refrigeration cycle (ARC) is proposed, in which ARC utilizes the waste heat of SRBC for cooling and further reduces the main compressor inlet temperature. The potential of using xenon and krypton as additives for the supercritical CO2 Brayton cycle is explored via comparative analysis. The results show that CO2/Krypton is more suitable to be the working fluid of the combined system because of its higher thermal efficiency and lower costs. The effects of the operating parameters and mass fraction of krypton on the thermo-economic performance of the combined system are discussed. Multi-objective optimization is applied to simultaneously optimize the thermal efficiency and total product unit cost of the system. Compared with the stand-alone cycle, the combined system can improve the cycle efficiency over a wide temperature range. The exergy efficiency of SRBC/ARC using CO2/Krypton (0.64/0.36) increased from 0.638 to 0.688, from 0.653 to 0.665, and from 0.586 to 0.646 at ambient temperature T0 = 10, 25, 35 °C, respectively, increasing by 7.84%, 1.84%, and 10.24% compared with that of SCO2RBC. The combined system will achieve its full potential when the critical temperature of the working fluid is close to the ambient temperature.
    • Download: (990.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermo-Economic Comparative Study and Multi-Objective Optimization of Supercritical CO2-Based Mixtures Brayton Cycle Combined With Absorption Refrigeration Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294999
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorMa, Ya-Nan
    contributor authorHu, Peng
    date accessioned2023-11-29T19:44:49Z
    date available2023-11-29T19:44:49Z
    date copyright5/19/2023 12:00:00 AM
    date issued5/19/2023 12:00:00 AM
    date issued2023-05-19
    identifier issn1948-5085
    identifier othertsea_15_8_084501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294999
    description abstractIn this paper, a novel system based on the combination of a supercritical recompression Brayton cycle (SRBC) and LiBr-H2O absorption refrigeration cycle (ARC) is proposed, in which ARC utilizes the waste heat of SRBC for cooling and further reduces the main compressor inlet temperature. The potential of using xenon and krypton as additives for the supercritical CO2 Brayton cycle is explored via comparative analysis. The results show that CO2/Krypton is more suitable to be the working fluid of the combined system because of its higher thermal efficiency and lower costs. The effects of the operating parameters and mass fraction of krypton on the thermo-economic performance of the combined system are discussed. Multi-objective optimization is applied to simultaneously optimize the thermal efficiency and total product unit cost of the system. Compared with the stand-alone cycle, the combined system can improve the cycle efficiency over a wide temperature range. The exergy efficiency of SRBC/ARC using CO2/Krypton (0.64/0.36) increased from 0.638 to 0.688, from 0.653 to 0.665, and from 0.586 to 0.646 at ambient temperature T0 = 10, 25, 35 °C, respectively, increasing by 7.84%, 1.84%, and 10.24% compared with that of SCO2RBC. The combined system will achieve its full potential when the critical temperature of the working fluid is close to the ambient temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermo-Economic Comparative Study and Multi-Objective Optimization of Supercritical CO2-Based Mixtures Brayton Cycle Combined With Absorption Refrigeration Cycle
    typeJournal Paper
    journal volume15
    journal issue8
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4062435
    journal fristpage84501-1
    journal lastpage84501-9
    page9
    treeJournal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian