YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Prediction of a Model Rotary Air Preheater Through Porous Media Approach

    Source: Journal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 007::page 71008-1
    Author:
    Padhi, Manas Ranjan
    ,
    Ghose, Prakash
    DOI: 10.1115/1.4062315
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Rotary regenerative heat exchangers or rotary regenerators are used for various heat recovery applications in order to fulfill the energy requirements. Rotary air preheater is a rotary regenerative heat exchanger which is widely used in thermal power plants to recover heat energy from exhaust flue gases. Several numerical works are being carried out to improve the performance and reduce the cost of the rotary air preheater. However, the accurate modeling of the internal structure of the matrix demands a lot of CPU power and is a big challenge for researchers. To overcome this problem, the rotary matrix of the preheater can be modeled using a porous media approach. But a thorough investigation is required to evaluate its performance. In this work, rotary air preheater simulations were carried out by applying a porous media approach. The effects of different operating conditions, such as speed of rotor, the mass flowrate of incoming fluids, material of matrix, and inlet temperature of hot fluid on the performance of rotary air preheater were investigated. Simulation results were validated with the results obtained from the experimentation performed in-house. The effect of fluid flowrates on pressure drop was also studied. It has been observed that the rotational speed of the rotor significantly affects the performance of the preheater, while the inlet temperature of hot fluid has a negligible effect on performance.
    • Download: (1.509Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Prediction of a Model Rotary Air Preheater Through Porous Media Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294985
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorPadhi, Manas Ranjan
    contributor authorGhose, Prakash
    date accessioned2023-11-29T19:43:50Z
    date available2023-11-29T19:43:50Z
    date copyright5/18/2023 12:00:00 AM
    date issued5/18/2023 12:00:00 AM
    date issued2023-05-18
    identifier issn1948-5085
    identifier othertsea_15_7_071008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294985
    description abstractRotary regenerative heat exchangers or rotary regenerators are used for various heat recovery applications in order to fulfill the energy requirements. Rotary air preheater is a rotary regenerative heat exchanger which is widely used in thermal power plants to recover heat energy from exhaust flue gases. Several numerical works are being carried out to improve the performance and reduce the cost of the rotary air preheater. However, the accurate modeling of the internal structure of the matrix demands a lot of CPU power and is a big challenge for researchers. To overcome this problem, the rotary matrix of the preheater can be modeled using a porous media approach. But a thorough investigation is required to evaluate its performance. In this work, rotary air preheater simulations were carried out by applying a porous media approach. The effects of different operating conditions, such as speed of rotor, the mass flowrate of incoming fluids, material of matrix, and inlet temperature of hot fluid on the performance of rotary air preheater were investigated. Simulation results were validated with the results obtained from the experimentation performed in-house. The effect of fluid flowrates on pressure drop was also studied. It has been observed that the rotational speed of the rotor significantly affects the performance of the preheater, while the inlet temperature of hot fluid has a negligible effect on performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Prediction of a Model Rotary Air Preheater Through Porous Media Approach
    typeJournal Paper
    journal volume15
    journal issue7
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4062315
    journal fristpage71008-1
    journal lastpage71008-12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian