YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Effusion Film Cooling on a Cylindrical Leading Edge Model

    Source: Journal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 011::page 111004-1
    Author:
    Huang, I-Cheng
    ,
    Lin, Kuan-Hsueh
    ,
    Huang, Chih-Yung
    ,
    Liu, Yao-Hsien
    DOI: 10.1115/1.4062955
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Effusion film cooling is effective for cooling high-temperature turbine blades because it requires less coolant and produces a more uniform temperature distribution than conventional film cooling. Effusion cooling for a cylindrical model representing the leading edge of a gas turbine blade was investigated. The experiment was performed in a low-speed wind tunnel at a Reynolds number of 100,000. Pressure-sensitive paint was used to measure the adiabatic film cooling effectiveness. Additive manufacturing was used to fabricate a porous structure on the test cylinder for effusion cooling. Both simple and compound angles were used for cooling injection. The effects of streamwise and spanwise hole spacings, turbulence intensities (1% and 8.7%), and blowing ratios (0.075, 0.15, 0.3, and 0.6) were studied at a fixed density ratio of 1. The effusion hole diameter was 0.1 cm, and the spanwise hole pitch-to-diameter ratio was either 2 or 4. Compared with conventional film cooing, effusion cooling achieved a higher cooling effectiveness and produced a better coolant coverage. Increasing the streamwise spacing noticeably reduced the cooling effectiveness for the simple-angle design due to film lift-off; the compound-angle designs thus achieved higher effectiveness. The simple-angle holes were more sensitive to changes in the mainstream turbulence intensity; increases in the turbulence intensity promoted the mixing of the coolant with the mainstream. Moreover, effusion cooling was more resistant to coolant lift-off at high blowing ratios.
    • Download: (1.582Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Effusion Film Cooling on a Cylindrical Leading Edge Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294973
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorHuang, I-Cheng
    contributor authorLin, Kuan-Hsueh
    contributor authorHuang, Chih-Yung
    contributor authorLiu, Yao-Hsien
    date accessioned2023-11-29T19:42:52Z
    date available2023-11-29T19:42:52Z
    date copyright8/16/2023 12:00:00 AM
    date issued8/16/2023 12:00:00 AM
    date issued2023-08-16
    identifier issn1948-5085
    identifier othertsea_15_11_111004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294973
    description abstractEffusion film cooling is effective for cooling high-temperature turbine blades because it requires less coolant and produces a more uniform temperature distribution than conventional film cooling. Effusion cooling for a cylindrical model representing the leading edge of a gas turbine blade was investigated. The experiment was performed in a low-speed wind tunnel at a Reynolds number of 100,000. Pressure-sensitive paint was used to measure the adiabatic film cooling effectiveness. Additive manufacturing was used to fabricate a porous structure on the test cylinder for effusion cooling. Both simple and compound angles were used for cooling injection. The effects of streamwise and spanwise hole spacings, turbulence intensities (1% and 8.7%), and blowing ratios (0.075, 0.15, 0.3, and 0.6) were studied at a fixed density ratio of 1. The effusion hole diameter was 0.1 cm, and the spanwise hole pitch-to-diameter ratio was either 2 or 4. Compared with conventional film cooing, effusion cooling achieved a higher cooling effectiveness and produced a better coolant coverage. Increasing the streamwise spacing noticeably reduced the cooling effectiveness for the simple-angle design due to film lift-off; the compound-angle designs thus achieved higher effectiveness. The simple-angle holes were more sensitive to changes in the mainstream turbulence intensity; increases in the turbulence intensity promoted the mixing of the coolant with the mainstream. Moreover, effusion cooling was more resistant to coolant lift-off at high blowing ratios.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Effusion Film Cooling on a Cylindrical Leading Edge Model
    typeJournal Paper
    journal volume15
    journal issue11
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4062955
    journal fristpage111004-1
    journal lastpage111004-12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian