YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Cooling Efficiency Model and Numerical Research of Multiparameter Film Cooling

    Source: Journal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 010::page 101001-1
    Author:
    Xu, Zhexuan
    ,
    Xu, Zheyao
    ,
    Chen, Yukun
    DOI: 10.1115/1.4062653
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Based on the validated simulation method of film cooling and multiphase flow simulation method, a multi-level three-dimensional simulation of forward-leaning fan-shaped film hole, cylindrical film hole with different injection angles, and film hole containing water vapor are established to discuss the effects of film hole structure parameters, hole distance, blowing ratio, injection angle, and water vapor volume on film cooling efficiency. The cooling efficiency of forward-leaning fan-shaped film hole increases as the exit length of film hole increases. After adding water vapor, the cooling efficiency of fan-shaped film hole decreases, and the influence of hole axis length and exit length on cooling efficiency is weak. For the cylindrical film hole, the larger the injection angle of film hole, the larger the film coverage area under the same blowing ratio. After adding water vapor, with the increase of the blowing ratio, the film coverage area increases first and then decreases. However, the film coverage area decreases with the increase of cooling injection angle for film holes containing water vapor. The cooling efficiency of the film hole with and without water vapor is related to the vapor velocity in the rising direction and the velocity in the mainstream direction, respectively. A model of film cooling efficiency with air blowing ratio and injection angle is established and verified with experimental data, based on the law that the average cooling efficiency in the main flow direction grows exponentially with the sine of the injection angle.
    • Download: (1.810Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Cooling Efficiency Model and Numerical Research of Multiparameter Film Cooling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294960
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorXu, Zhexuan
    contributor authorXu, Zheyao
    contributor authorChen, Yukun
    date accessioned2023-11-29T19:41:42Z
    date available2023-11-29T19:41:42Z
    date copyright6/15/2023 12:00:00 AM
    date issued6/15/2023 12:00:00 AM
    date issued2023-06-15
    identifier issn1948-5085
    identifier othertsea_15_10_101001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294960
    description abstractBased on the validated simulation method of film cooling and multiphase flow simulation method, a multi-level three-dimensional simulation of forward-leaning fan-shaped film hole, cylindrical film hole with different injection angles, and film hole containing water vapor are established to discuss the effects of film hole structure parameters, hole distance, blowing ratio, injection angle, and water vapor volume on film cooling efficiency. The cooling efficiency of forward-leaning fan-shaped film hole increases as the exit length of film hole increases. After adding water vapor, the cooling efficiency of fan-shaped film hole decreases, and the influence of hole axis length and exit length on cooling efficiency is weak. For the cylindrical film hole, the larger the injection angle of film hole, the larger the film coverage area under the same blowing ratio. After adding water vapor, with the increase of the blowing ratio, the film coverage area increases first and then decreases. However, the film coverage area decreases with the increase of cooling injection angle for film holes containing water vapor. The cooling efficiency of the film hole with and without water vapor is related to the vapor velocity in the rising direction and the velocity in the mainstream direction, respectively. A model of film cooling efficiency with air blowing ratio and injection angle is established and verified with experimental data, based on the law that the average cooling efficiency in the main flow direction grows exponentially with the sine of the injection angle.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Cooling Efficiency Model and Numerical Research of Multiparameter Film Cooling
    typeJournal Paper
    journal volume15
    journal issue10
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4062653
    journal fristpage101001-1
    journal lastpage101001-12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian