YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Vibrating-String Model for Closed-Loop Wave Transmission and Reflection Between the Aorta and Periphery

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2023:;volume( 006 ):;issue: 004::page 41001-1
    Author:
    Hao, Zhili
    DOI: 10.1115/1.4062078
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A tube-load model is used to reconstruct aortic pressure waveform from peripheral pressure waveform. Yet, the reconstructed aortic pressure waveform is greatly affected by load impedance used. In this work, a vibrating-string model for closed-loop wave transmission and reflection between the aorta and periphery is developed to examine the roles of all the parameters involved in aortic pressure waveform. The arterial pulsatile wave theory gives rise to the standard one-dimensional wave equation for a vibrating string. A vibrating-string model based on radial displacement of the arterial wall is developed to relate aortic pressure waveform to peripheral pressure waveform, relate load impedance to input impedance, and derive theoretical expressions for associated clinical indices. The vibrating-string model is extended to incorporate blood velocity and is further connected to the left ventricle (LV) to study the role of the LV in aortic pressure waveform. The difference between the vibrating-string model and the tube-load model is also examined. Load impedance is identified as an indispensable independent parameter for reconstruction of aortic pressure waveform with accuracy, and its physiologically realistic harmonic dependence can only be obtained from the measured input impedance. The derived expressions for clinical indices interpret some clinical findings and underscore the role of harmonics in clinical indices. Some misconceptions in the tube-load model are revealed, including load impedance and characteristic impedance. This work clarifies the role of harmonics-dependence of load impedance and harmonics of aortic pressure waveform in determining clinical indices.
    • Download: (1.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Vibrating-String Model for Closed-Loop Wave Transmission and Reflection Between the Aorta and Periphery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294613
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorHao, Zhili
    date accessioned2023-11-29T19:09:01Z
    date available2023-11-29T19:09:01Z
    date copyright3/24/2023 12:00:00 AM
    date issued3/24/2023 12:00:00 AM
    date issued2023-03-24
    identifier issn2572-7958
    identifier otherjesmdt_006_04_041001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294613
    description abstractA tube-load model is used to reconstruct aortic pressure waveform from peripheral pressure waveform. Yet, the reconstructed aortic pressure waveform is greatly affected by load impedance used. In this work, a vibrating-string model for closed-loop wave transmission and reflection between the aorta and periphery is developed to examine the roles of all the parameters involved in aortic pressure waveform. The arterial pulsatile wave theory gives rise to the standard one-dimensional wave equation for a vibrating string. A vibrating-string model based on radial displacement of the arterial wall is developed to relate aortic pressure waveform to peripheral pressure waveform, relate load impedance to input impedance, and derive theoretical expressions for associated clinical indices. The vibrating-string model is extended to incorporate blood velocity and is further connected to the left ventricle (LV) to study the role of the LV in aortic pressure waveform. The difference between the vibrating-string model and the tube-load model is also examined. Load impedance is identified as an indispensable independent parameter for reconstruction of aortic pressure waveform with accuracy, and its physiologically realistic harmonic dependence can only be obtained from the measured input impedance. The derived expressions for clinical indices interpret some clinical findings and underscore the role of harmonics in clinical indices. Some misconceptions in the tube-load model are revealed, including load impedance and characteristic impedance. This work clarifies the role of harmonics-dependence of load impedance and harmonics of aortic pressure waveform in determining clinical indices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Vibrating-String Model for Closed-Loop Wave Transmission and Reflection Between the Aorta and Periphery
    typeJournal Paper
    journal volume6
    journal issue4
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4062078
    journal fristpage41001-1
    journal lastpage41001-13
    page13
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2023:;volume( 006 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian