YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Decoupling Uniaxial Tensile Prestress and Waveguide Effects From Estimates of the Complex Shear Modulus in a Cylindrical Structure Using Transverse-Polarized Dynamic Elastography

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2022:;volume( 006 ):;issue: 002::page 21003-1
    Author:
    Salehabadi, Melika
    ,
    Crutison, Joseph
    ,
    Klatt, Dieter
    ,
    Royston, Thomas J.
    DOI: 10.1115/1.4056411
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions.
    • Download: (1.308Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Decoupling Uniaxial Tensile Prestress and Waveguide Effects From Estimates of the Complex Shear Modulus in a Cylindrical Structure Using Transverse-Polarized Dynamic Elastography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294596
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorSalehabadi, Melika
    contributor authorCrutison, Joseph
    contributor authorKlatt, Dieter
    contributor authorRoyston, Thomas J.
    date accessioned2023-11-29T19:07:35Z
    date available2023-11-29T19:07:35Z
    date copyright12/23/2022 12:00:00 AM
    date issued12/23/2022 12:00:00 AM
    date issued2022-12-23
    identifier issn2572-7958
    identifier otherjesmdt_006_02_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294596
    description abstractDynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDecoupling Uniaxial Tensile Prestress and Waveguide Effects From Estimates of the Complex Shear Modulus in a Cylindrical Structure Using Transverse-Polarized Dynamic Elastography
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4056411
    journal fristpage21003-1
    journal lastpage21003-8
    page8
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2022:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian