YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Interaction of Damage Evolution and Thermal Buckling in Stepped Circular Bilaminates

    Source: Journal of Applied Mechanics:;2023:;volume( 090 ):;issue: 011::page 111010-1
    Author:
    Xu, S.
    ,
    Bottega, W. J.
    DOI: 10.1115/1.4062935
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The behavior and evolution of stepped circular bi-laminates with edge damage are studied for structures subjected to uniform thermal load. The problem is formulated as a moving intermediate boundaries problem in the calculus of variations, where the boundary of an evolving region of damage emanating from the edge of the smaller substructure, as well as the boundary of a progressing/regressing region of sliding contact adjacent to the intact region of the composite structure are each allowed to vary along with the displacements. This yields the associated transversality conditions that define the locations of the propagating boundaries that correspond to equilibrium configurations of the evolving composite structure, as well as the equations of equilibrium and the associated interior and exterior boundary conditions. Various configurations of contact of the detached segments of the composite structure and the associated behavior are considered, and the influence and progression of contact on the overall evolution of the composite structure are assessed. Closed-form analytical solutions to the geometrically nonlinear problem are obtained, and expressions for the critical buckling load are developed. The explicit forms of the total energy release rate along the delamination front, as well as of the conditions for propagation of the contact zone boundary, are obtained from the analytical solutions and the corresponding transversality conditions. Results of numerical simulations based on the analytical solutions are presented and are seen to unveil a rich evolution process involving contact progression/recession and metamorphosis, buckling, and detachment progression during the prebuckling phase, during sling-shot buckling, and during the postbuckling phase, depending on the material properties of the sublaminates, the geometry of the sublaminates, the initial size of the damage, and the strength of the interfacial bond. Characteristic behavior of damage propagation is found to be quite robust and is seen to include stable propagation, stable followed by unstable progression, arrest, and catastrophic propagation.
    • Download: (594.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Interaction of Damage Evolution and Thermal Buckling in Stepped Circular Bilaminates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294419
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorXu, S.
    contributor authorBottega, W. J.
    date accessioned2023-11-29T18:51:20Z
    date available2023-11-29T18:51:20Z
    date copyright8/3/2023 12:00:00 AM
    date issued8/3/2023 12:00:00 AM
    date issued2023-08-03
    identifier issn0021-8936
    identifier otherjam_90_11_111010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294419
    description abstractThe behavior and evolution of stepped circular bi-laminates with edge damage are studied for structures subjected to uniform thermal load. The problem is formulated as a moving intermediate boundaries problem in the calculus of variations, where the boundary of an evolving region of damage emanating from the edge of the smaller substructure, as well as the boundary of a progressing/regressing region of sliding contact adjacent to the intact region of the composite structure are each allowed to vary along with the displacements. This yields the associated transversality conditions that define the locations of the propagating boundaries that correspond to equilibrium configurations of the evolving composite structure, as well as the equations of equilibrium and the associated interior and exterior boundary conditions. Various configurations of contact of the detached segments of the composite structure and the associated behavior are considered, and the influence and progression of contact on the overall evolution of the composite structure are assessed. Closed-form analytical solutions to the geometrically nonlinear problem are obtained, and expressions for the critical buckling load are developed. The explicit forms of the total energy release rate along the delamination front, as well as of the conditions for propagation of the contact zone boundary, are obtained from the analytical solutions and the corresponding transversality conditions. Results of numerical simulations based on the analytical solutions are presented and are seen to unveil a rich evolution process involving contact progression/recession and metamorphosis, buckling, and detachment progression during the prebuckling phase, during sling-shot buckling, and during the postbuckling phase, depending on the material properties of the sublaminates, the geometry of the sublaminates, the initial size of the damage, and the strength of the interfacial bond. Characteristic behavior of damage propagation is found to be quite robust and is seen to include stable propagation, stable followed by unstable progression, arrest, and catastrophic propagation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Interaction of Damage Evolution and Thermal Buckling in Stepped Circular Bilaminates
    typeJournal Paper
    journal volume90
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4062935
    journal fristpage111010-1
    journal lastpage111010-12
    page12
    treeJournal of Applied Mechanics:;2023:;volume( 090 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian