YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The General Gauss Principle of Least Constraint

    Source: Journal of Applied Mechanics:;2023:;volume( 090 ):;issue: 011::page 111006-1
    Author:
    Udwadia, Firdaus E.
    DOI: 10.1115/1.4062887
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper develops a general form of Gauss’s Principle of Least Constraint, which deals with the manner in which Nature appears to orchestrate the motion of constrained mechanical systems. The theory of constrained motion has been at the heart of classical mechanics since the days of Lagrange, and it is used in various areas of science and engineering like analytical dynamics, quantum mechanics, statistical physics, and nonequilibrium thermodynamics. The new principle permits the constraints on any mechanical system to be inconsistent and shows that Nature handles these inconsistent constraints in the least squares sense. This broadening of Gauss’s original principle leads to two forms of the General Gauss Principle obtained in this paper. They explain why the motion that Nature generates is robust with respect to inaccuracies with which constraints are often specified in modeling naturally occurring and engineered systems since their specification in dynamical systems are often only approximate, and many physical systems may not exactly satisfy them at every instant of time. An important byproduct of the new principle is a refinement of the notion of what constitutes a virtual displacement, a foundational concept in all classical mechanics.
    • Download: (292.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The General Gauss Principle of Least Constraint

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294415
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorUdwadia, Firdaus E.
    date accessioned2023-11-29T18:50:59Z
    date available2023-11-29T18:50:59Z
    date copyright8/2/2023 12:00:00 AM
    date issued8/2/2023 12:00:00 AM
    date issued2023-08-02
    identifier issn0021-8936
    identifier otherjam_90_11_111006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294415
    description abstractThis paper develops a general form of Gauss’s Principle of Least Constraint, which deals with the manner in which Nature appears to orchestrate the motion of constrained mechanical systems. The theory of constrained motion has been at the heart of classical mechanics since the days of Lagrange, and it is used in various areas of science and engineering like analytical dynamics, quantum mechanics, statistical physics, and nonequilibrium thermodynamics. The new principle permits the constraints on any mechanical system to be inconsistent and shows that Nature handles these inconsistent constraints in the least squares sense. This broadening of Gauss’s original principle leads to two forms of the General Gauss Principle obtained in this paper. They explain why the motion that Nature generates is robust with respect to inaccuracies with which constraints are often specified in modeling naturally occurring and engineered systems since their specification in dynamical systems are often only approximate, and many physical systems may not exactly satisfy them at every instant of time. An important byproduct of the new principle is a refinement of the notion of what constitutes a virtual displacement, a foundational concept in all classical mechanics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe General Gauss Principle of Least Constraint
    typeJournal Paper
    journal volume90
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4062887
    journal fristpage111006-1
    journal lastpage111006-8
    page8
    treeJournal of Applied Mechanics:;2023:;volume( 090 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian