YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Turbine Tip Clearance With Performance Degradation Using Multilayer Perceptron

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 009::page 91007-1
    Author:
    Yang, Yue
    ,
    Mao, Junkui
    ,
    Guo, Naxian
    ,
    Chen, Pingting
    ,
    Wang, Feilong
    DOI: 10.1115/1.4062767
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper developed a process for turbine tip clearance prediction and control considering performance degradation to address the contradiction between computational efficiency and computational accuracy. The developed process consists of an offline high-accuracy database establishment for tip clearance with performance degradation and an online fast tip clearance prediction and control using machine learning. For the former, the steady-state tip clearance is obtained by the calculations for the two-dimensional axisymmetric casing and disk deformations using the finite element method and the one-dimensional blade deformation using the engineering calculation method. The effects of performance degradation, including blade creep and turbine inlet temperature degradation are introduced to update the boundary conditions in gas path and initial clearance. For the latter, the multilayer perceptron is used to realize the fast tip clearance prediction. Considering the independence of component deformations, the tip clearance prediction is achieved by the component deformation predictions, which also reduces the dimension of input parameters for each prediction model and improves the prediction accuracy. Combining the above two parts, the tip clearance with performance degradation can be obtained within 0.00025 s/time, and the maximum absolute error is only 0.012 mm. In addition, with the help of the process, the optimized tip clearance control strategy can be obtained for the performance degradation states, which restores the tip clearance with a 17.66% increment to the initial state without performance degradation. This paper will provide a reference for the tip clearance prediction and control with small computation and high accuracy.
    • Download: (6.473Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Turbine Tip Clearance With Performance Degradation Using Multilayer Perceptron

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294331
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorYang, Yue
    contributor authorMao, Junkui
    contributor authorGuo, Naxian
    contributor authorChen, Pingting
    contributor authorWang, Feilong
    date accessioned2023-11-29T18:42:18Z
    date available2023-11-29T18:42:18Z
    date copyright7/27/2023 12:00:00 AM
    date issued7/27/2023 12:00:00 AM
    date issued2023-07-27
    identifier issn0742-4795
    identifier othergtp_145_09_091007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294331
    description abstractThis paper developed a process for turbine tip clearance prediction and control considering performance degradation to address the contradiction between computational efficiency and computational accuracy. The developed process consists of an offline high-accuracy database establishment for tip clearance with performance degradation and an online fast tip clearance prediction and control using machine learning. For the former, the steady-state tip clearance is obtained by the calculations for the two-dimensional axisymmetric casing and disk deformations using the finite element method and the one-dimensional blade deformation using the engineering calculation method. The effects of performance degradation, including blade creep and turbine inlet temperature degradation are introduced to update the boundary conditions in gas path and initial clearance. For the latter, the multilayer perceptron is used to realize the fast tip clearance prediction. Considering the independence of component deformations, the tip clearance prediction is achieved by the component deformation predictions, which also reduces the dimension of input parameters for each prediction model and improves the prediction accuracy. Combining the above two parts, the tip clearance with performance degradation can be obtained within 0.00025 s/time, and the maximum absolute error is only 0.012 mm. In addition, with the help of the process, the optimized tip clearance control strategy can be obtained for the performance degradation states, which restores the tip clearance with a 17.66% increment to the initial state without performance degradation. This paper will provide a reference for the tip clearance prediction and control with small computation and high accuracy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of Turbine Tip Clearance With Performance Degradation Using Multilayer Perceptron
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4062767
    journal fristpage91007-1
    journal lastpage91007-16
    page16
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian