YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Spark Assisted and Hot Surface Assisted Compression Ignition (SACI, HSACI) in a Naturally Aspirated Single-Cylinder Gas Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 008::page 81007-1
    Author:
    Judith, Joern Alexander
    ,
    Kettner, Maurice
    ,
    Schwarz, Danny
    ,
    Klaissle, Markus
    ,
    Koch, Thomas
    DOI: 10.1115/1.4062409
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Spark assisted compression ignition (SACI) represents an efficacious technique to extend the operating range and control combustion timing in homogeneous charge compression ignition (HCCI) engines. Recently, a hot surface ignition system (HSI) was demonstrated to enable hot surface assisted compression ignition (HSACI) featuring similar combustion characteristics compared to SACI. This work compares both combustion processes with regard to control and combustion characteristics, the strength of the ignition systems, and cycle-by-cycle variations (CCV). Engine trials were conducted using a single-cylinder research engine fueled with natural gas. The engine operated naturally aspirated at an engine speed of 1400 1/min and steady-state conditions. Experimental conditions cover relative air-fuel ratios λ = 2.1–3.1, intake temperatures Tin = 140–170 °C and intake pressures pin = 993–995 mbar. Results show similar capabilities of SACI and HSACI to control combustion timing by means of spark timing in SACI and hot surface temperature in HSACI. Heat release analyses of individual combustion cycles point out the similarity of both combustion processes. The evaluation of the strength of the ignition systems reveals that HSACI extends the lean limit by Δλ = 0.05–0.10 and advances the earliest applicable combustion timing (MinCA50) by ΔMinCA50 = 1.0–4.5 °CA provided that ringing is not of concern. Comparison of CCV in HCCI, SACI, and HSACI shows highest combustion stability for HCCI, followed by SACI. HSACI evinces highest CCV due to a larger variation at the start of combustion.
    • Download: (5.529Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Spark Assisted and Hot Surface Assisted Compression Ignition (SACI, HSACI) in a Naturally Aspirated Single-Cylinder Gas Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294325
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorJudith, Joern Alexander
    contributor authorKettner, Maurice
    contributor authorSchwarz, Danny
    contributor authorKlaissle, Markus
    contributor authorKoch, Thomas
    date accessioned2023-11-29T18:41:46Z
    date available2023-11-29T18:41:46Z
    date copyright7/19/2023 12:00:00 AM
    date issued7/19/2023 12:00:00 AM
    date issued2023-07-19
    identifier issn0742-4795
    identifier othergtp_145_08_081007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294325
    description abstractSpark assisted compression ignition (SACI) represents an efficacious technique to extend the operating range and control combustion timing in homogeneous charge compression ignition (HCCI) engines. Recently, a hot surface ignition system (HSI) was demonstrated to enable hot surface assisted compression ignition (HSACI) featuring similar combustion characteristics compared to SACI. This work compares both combustion processes with regard to control and combustion characteristics, the strength of the ignition systems, and cycle-by-cycle variations (CCV). Engine trials were conducted using a single-cylinder research engine fueled with natural gas. The engine operated naturally aspirated at an engine speed of 1400 1/min and steady-state conditions. Experimental conditions cover relative air-fuel ratios λ = 2.1–3.1, intake temperatures Tin = 140–170 °C and intake pressures pin = 993–995 mbar. Results show similar capabilities of SACI and HSACI to control combustion timing by means of spark timing in SACI and hot surface temperature in HSACI. Heat release analyses of individual combustion cycles point out the similarity of both combustion processes. The evaluation of the strength of the ignition systems reveals that HSACI extends the lean limit by Δλ = 0.05–0.10 and advances the earliest applicable combustion timing (MinCA50) by ΔMinCA50 = 1.0–4.5 °CA provided that ringing is not of concern. Comparison of CCV in HCCI, SACI, and HSACI shows highest combustion stability for HCCI, followed by SACI. HSACI evinces highest CCV due to a larger variation at the start of combustion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study on Spark Assisted and Hot Surface Assisted Compression Ignition (SACI, HSACI) in a Naturally Aspirated Single-Cylinder Gas Engine
    typeJournal Paper
    journal volume145
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4062409
    journal fristpage81007-1
    journal lastpage81007-17
    page17
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian