YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Yield Criterion for Nickel-Based Superalloys

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 005::page 51016-1
    Author:
    Irmak, Firat
    ,
    Hanekom, Kevin
    ,
    Torkaman, Alex
    ,
    Gordon, Ali P.
    DOI: 10.1115/1.4055920
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With the significant evolution of modern gas turbine engines, selection of high-temperature resistant alloys in the hot section is known to be the fundamental solution to enhance the capabilities of these engines. In general, the high-temperature components are mainly comprised of polycrystalline, directionally solidified, and single crystal superalloys. Single crystal (SX) superalloys were developed in the 1980s to achieve high fatigue resistance and substantial creep rupture strength by eliminating grain boundaries. Directional solidification methods enabled the solidification arrangement of the materials to be comprised of columnar grains which are aligned parallel to the 〈001〉 direction. These casting types have been frequently used with nickel-based superalloys (NBSAs) to develop modern gas turbine blades. In this work, the yield behavior of generic SX and directionally solidified (DS) NBSAs is studied. By observing various SX and DS alloys, it was concluded with need for a novel criterion that can present anisotropic and tensile/compressive asymmetric yield surfaces. This novel criterion is comprised of the criterion proposed by Hill for anisotropic materials and the method developed by Drucker and Prager for alloys that have different tensile and compressive yield strengths. Additional terms to Hill's criterion are introduced to capture the coupling effect of normal stress and shear stress when the applied loads are not in the direction of principal axes of the material coordinate system for single crystal alloys. The parameters for the criterion are obtained from simple uniaxial tension and compression experiments. Results are compared with various well-established yield criterions. Additionally, the novel criterion is utilized to capture the effective stress and strain of multi-axial loading of turbine blades under nonisothermal conditions
    • Download: (1.509Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Yield Criterion for Nickel-Based Superalloys

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294305
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorIrmak, Firat
    contributor authorHanekom, Kevin
    contributor authorTorkaman, Alex
    contributor authorGordon, Ali P.
    date accessioned2023-11-29T18:39:55Z
    date available2023-11-29T18:39:55Z
    date copyright1/10/2023 12:00:00 AM
    date issued1/10/2023 12:00:00 AM
    date issued2023-01-10
    identifier issn0742-4795
    identifier othergtp_145_05_051016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294305
    description abstractWith the significant evolution of modern gas turbine engines, selection of high-temperature resistant alloys in the hot section is known to be the fundamental solution to enhance the capabilities of these engines. In general, the high-temperature components are mainly comprised of polycrystalline, directionally solidified, and single crystal superalloys. Single crystal (SX) superalloys were developed in the 1980s to achieve high fatigue resistance and substantial creep rupture strength by eliminating grain boundaries. Directional solidification methods enabled the solidification arrangement of the materials to be comprised of columnar grains which are aligned parallel to the 〈001〉 direction. These casting types have been frequently used with nickel-based superalloys (NBSAs) to develop modern gas turbine blades. In this work, the yield behavior of generic SX and directionally solidified (DS) NBSAs is studied. By observing various SX and DS alloys, it was concluded with need for a novel criterion that can present anisotropic and tensile/compressive asymmetric yield surfaces. This novel criterion is comprised of the criterion proposed by Hill for anisotropic materials and the method developed by Drucker and Prager for alloys that have different tensile and compressive yield strengths. Additional terms to Hill's criterion are introduced to capture the coupling effect of normal stress and shear stress when the applied loads are not in the direction of principal axes of the material coordinate system for single crystal alloys. The parameters for the criterion are obtained from simple uniaxial tension and compression experiments. Results are compared with various well-established yield criterions. Additionally, the novel criterion is utilized to capture the effective stress and strain of multi-axial loading of turbine blades under nonisothermal conditions
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Yield Criterion for Nickel-Based Superalloys
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055920
    journal fristpage51016-1
    journal lastpage51016-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian