YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analyses of Damping Sustainability of Additively Manufactured Nickel Alloy Components Subjected to High Strain Loading Cycles

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003::page 31011-1
    Author:
    Hollkamp, John P.
    ,
    Scott-Emuakpor, Onome
    ,
    Celli, Dino
    DOI: 10.1115/1.4055579
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: While integrally bladed rotors in turbine engines have multiple benefits, they are more susceptible to vibration and as a result, high cycle fatigue failure. In response, damping treatments such as viscoelastic layers, hard coatings, and particle dampers have been utilized to reduce vibration of integrally bladed rotors and promote long service life. In recent experiments, nickel-based alloy 718 structural beams representative of turbine blades were manufactured via laser powder bed fusion (LPBF) with internal geometries containing unfused powder. Compared to fully fused beams, these beams with internal particle dampers have demonstrated a significant improvement in damping performance, suppressing vibrations by as much as 95%. However, the inherent damping of the particle dampers decreases as the strain amplitude increases when some of the unfused powder fuses to the walls of the pockets. This study investigates the effect of the location of the particle dampers within the beam on the sustainability of its damping performance. To compare the effect of the particle damper's location, the LPBF nickel-based alloy 718 beams are subjected to successive resonance dwells with increasing strain amplitude. After each dwell, the damping performance is assessed via the half-power bandwidth method of the frequency response function. Results from this study indicate that while the location of the particle dampers within the specimen does influence when the damping begins to degrade, it is not the optimal parameter for damping sustainability. The aim of this and future work is to improve the long-term damping performance and viability of the internal particle damper so that it can be more effectively utilized to extend the lifetime of turbomachinery components.
    • Download: (1.797Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analyses of Damping Sustainability of Additively Manufactured Nickel Alloy Components Subjected to High Strain Loading Cycles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294294
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHollkamp, John P.
    contributor authorScott-Emuakpor, Onome
    contributor authorCelli, Dino
    date accessioned2023-11-29T18:39:13Z
    date available2023-11-29T18:39:13Z
    date copyright12/5/2022 12:00:00 AM
    date issued12/5/2022 12:00:00 AM
    date issued2022-12-05
    identifier issn0742-4795
    identifier othergtp_145_03_031011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294294
    description abstractWhile integrally bladed rotors in turbine engines have multiple benefits, they are more susceptible to vibration and as a result, high cycle fatigue failure. In response, damping treatments such as viscoelastic layers, hard coatings, and particle dampers have been utilized to reduce vibration of integrally bladed rotors and promote long service life. In recent experiments, nickel-based alloy 718 structural beams representative of turbine blades were manufactured via laser powder bed fusion (LPBF) with internal geometries containing unfused powder. Compared to fully fused beams, these beams with internal particle dampers have demonstrated a significant improvement in damping performance, suppressing vibrations by as much as 95%. However, the inherent damping of the particle dampers decreases as the strain amplitude increases when some of the unfused powder fuses to the walls of the pockets. This study investigates the effect of the location of the particle dampers within the beam on the sustainability of its damping performance. To compare the effect of the particle damper's location, the LPBF nickel-based alloy 718 beams are subjected to successive resonance dwells with increasing strain amplitude. After each dwell, the damping performance is assessed via the half-power bandwidth method of the frequency response function. Results from this study indicate that while the location of the particle dampers within the specimen does influence when the damping begins to degrade, it is not the optimal parameter for damping sustainability. The aim of this and future work is to improve the long-term damping performance and viability of the internal particle damper so that it can be more effectively utilized to extend the lifetime of turbomachinery components.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalyses of Damping Sustainability of Additively Manufactured Nickel Alloy Components Subjected to High Strain Loading Cycles
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055579
    journal fristpage31011-1
    journal lastpage31011-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian