YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of a Coupled Blow-Off/Flashback Process in a High-Pressure Lean-Burn Combustor

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002::page 21010-1
    Author:
    Soli, Alessandro
    ,
    Langella, Ivan
    DOI: 10.1115/1.4055483
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Large eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at takeoff conditions. A previously developed flamelet-based approach is used to model turbulence–combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilizes in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream toward the injector as already described in other studies. This large eddy simulation (LES), however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream, and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.
    • Download: (2.615Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of a Coupled Blow-Off/Flashback Process in a High-Pressure Lean-Burn Combustor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294285
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSoli, Alessandro
    contributor authorLangella, Ivan
    date accessioned2023-11-29T18:38:36Z
    date available2023-11-29T18:38:36Z
    date copyright11/28/2022 12:00:00 AM
    date issued11/28/2022 12:00:00 AM
    date issued2022-11-28
    identifier issn0742-4795
    identifier othergtp_145_02_021010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294285
    description abstractLarge eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at takeoff conditions. A previously developed flamelet-based approach is used to model turbulence–combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilizes in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream toward the injector as already described in other studies. This large eddy simulation (LES), however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream, and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of a Coupled Blow-Off/Flashback Process in a High-Pressure Lean-Burn Combustor
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055483
    journal fristpage21010-1
    journal lastpage21010-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian