YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Dynamic Performance Enhancement for Solar-Powered Pumping Systems Using PI-Based MPPT Techniques

    Source: Journal of Solar Energy Engineering:;2023:;volume( 145 ):;issue: 006::page 61001-1
    Author:
    Ebrahim, Mohamed A.
    ,
    Osama, Adham
    ,
    Kotb, Khaled M.
    DOI: 10.1115/1.4057038
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The integration of solar-powered pumping systems (SPPS) into agriculture and potable and wastewater sectors becomes mandatory to provide water in remote regions. The broad use of SPPS with classical maximum power point tracking controllers (MPPTCs) showed moderated voltage and power response deterioration. Therefore, the necessity for overcoming these performance degradations and pre-testing of MPPTCs is not an option for the proper operation of such systems. This paper presents a new simple, cost-effective real-time hardware-in-the-loop (RT-HIL) framework to enhance the dynamic performance of SPPS. To accomplish this study, a real pumping station was modeled and equipped with MPPTCs through matlab/simulink. Besides, a practical SPPS was implemented to evaluate the effectiveness of the proposed RT-HIL on system performance. The practical SPPS includes designing a DC-DC buck converter circuit equipped with metaheuristic optimization-based real-time MPPTCs. The tuned PI/FOPI-based MPPTCs are adopted in this work to gain the maximum power from the PV generator under measured real environmental conditions. The proposed real-time MPPTCs techniques are perturb and observe, and incremental conductance (IC) with I, PI, and fractional-order PI (FOPI) controllers. The simulation and the experimental results prove the superiority of the developed real-time FOPI-based MPPTCs in enhancing the system performance in terms of the gained power, module output current, pump flowrate, and pump efficiency. The paper’s novelty lies behind the relatively low-cost real-time execution of PI/FOPI-based MPPT techniques on SPPS. This work was simulated using matlab/simulink in conjunction with Arduino-based RT-HIL and the experimental validation was implemented at the National Water Research Center (NWRC) in Egypt.
    • Download: (1.178Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Dynamic Performance Enhancement for Solar-Powered Pumping Systems Using PI-Based MPPT Techniques

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292600
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorEbrahim, Mohamed A.
    contributor authorOsama, Adham
    contributor authorKotb, Khaled M.
    date accessioned2023-08-16T18:51:27Z
    date available2023-08-16T18:51:27Z
    date copyright3/22/2023 12:00:00 AM
    date issued2023
    identifier issn0199-6231
    identifier othersol_145_6_061001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292600
    description abstractThe integration of solar-powered pumping systems (SPPS) into agriculture and potable and wastewater sectors becomes mandatory to provide water in remote regions. The broad use of SPPS with classical maximum power point tracking controllers (MPPTCs) showed moderated voltage and power response deterioration. Therefore, the necessity for overcoming these performance degradations and pre-testing of MPPTCs is not an option for the proper operation of such systems. This paper presents a new simple, cost-effective real-time hardware-in-the-loop (RT-HIL) framework to enhance the dynamic performance of SPPS. To accomplish this study, a real pumping station was modeled and equipped with MPPTCs through matlab/simulink. Besides, a practical SPPS was implemented to evaluate the effectiveness of the proposed RT-HIL on system performance. The practical SPPS includes designing a DC-DC buck converter circuit equipped with metaheuristic optimization-based real-time MPPTCs. The tuned PI/FOPI-based MPPTCs are adopted in this work to gain the maximum power from the PV generator under measured real environmental conditions. The proposed real-time MPPTCs techniques are perturb and observe, and incremental conductance (IC) with I, PI, and fractional-order PI (FOPI) controllers. The simulation and the experimental results prove the superiority of the developed real-time FOPI-based MPPTCs in enhancing the system performance in terms of the gained power, module output current, pump flowrate, and pump efficiency. The paper’s novelty lies behind the relatively low-cost real-time execution of PI/FOPI-based MPPT techniques on SPPS. This work was simulated using matlab/simulink in conjunction with Arduino-based RT-HIL and the experimental validation was implemented at the National Water Research Center (NWRC) in Egypt.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReal-Time Dynamic Performance Enhancement for Solar-Powered Pumping Systems Using PI-Based MPPT Techniques
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4057038
    journal fristpage61001-1
    journal lastpage61001-10
    page10
    treeJournal of Solar Energy Engineering:;2023:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian