YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis and Optimization of Parabolic Trough Solar Collector to Improve Its Optical Performance

    Source: Journal of Solar Energy Engineering:;2022:;volume( 145 ):;issue: 003::page 31009-1
    Author:
    Goel, Anubhav
    ,
    Mahadeva, Rajesh
    ,
    Manik, Gaurav
    DOI: 10.1115/1.4055995
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article presents a detailed analysis of parameters that affect the optical performance of parabolic trough solar collector (PTSC) and proposes a suitable method to optimize the relevant ones. A mathematical model is drafted and simulated for known geometry and parameters of industrial solar technology (IST) PTSC. The model was evaluated for three different configurations of IST PTSC involving distinct components. A comparison between the experimental results and model estimations indicates a maximum root-mean-square error (RMSE) of 0.7997, confirming the reliability of the proposed model. The influence of variations in absorber diameter (Dao), length (lrc), width (wrc), and focal length of PTSC (frc), along with direct normal incidence (In), dirt factors (ξdm, ξdhc), and angle of incidence (θ) on the optical performance of PTSC has been investigated. It was established that variation in mentioned parameters exhibits both positive and negative impacts on optical performance. After careful analysis, lrc, wrc, frc, Dao, and θ were chosen for optimization as it was perceived that by varying these in a reasonable range, an optimal set of parameters could be obtained that maximize the absorbed solar irradiation for a given PTSC. Genetic algorithm (GA), particle swarm optimization (PSO), and African vultures optimization algorithm (AVOA) are utilized to estimate the optimal values of parameters. Significant improvement in absorbed solar irradiation (∼16%) is registered with optimized parameters, suggesting that benefits can be obtained if a study is performed prior to producing PTSC modules for an application.
    • Download: (774.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis and Optimization of Parabolic Trough Solar Collector to Improve Its Optical Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292574
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorGoel, Anubhav
    contributor authorMahadeva, Rajesh
    contributor authorManik, Gaurav
    date accessioned2023-08-16T18:50:29Z
    date available2023-08-16T18:50:29Z
    date copyright11/11/2022 12:00:00 AM
    date issued2022
    identifier issn0199-6231
    identifier othersol_145_3_031009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292574
    description abstractThis article presents a detailed analysis of parameters that affect the optical performance of parabolic trough solar collector (PTSC) and proposes a suitable method to optimize the relevant ones. A mathematical model is drafted and simulated for known geometry and parameters of industrial solar technology (IST) PTSC. The model was evaluated for three different configurations of IST PTSC involving distinct components. A comparison between the experimental results and model estimations indicates a maximum root-mean-square error (RMSE) of 0.7997, confirming the reliability of the proposed model. The influence of variations in absorber diameter (Dao), length (lrc), width (wrc), and focal length of PTSC (frc), along with direct normal incidence (In), dirt factors (ξdm, ξdhc), and angle of incidence (θ) on the optical performance of PTSC has been investigated. It was established that variation in mentioned parameters exhibits both positive and negative impacts on optical performance. After careful analysis, lrc, wrc, frc, Dao, and θ were chosen for optimization as it was perceived that by varying these in a reasonable range, an optimal set of parameters could be obtained that maximize the absorbed solar irradiation for a given PTSC. Genetic algorithm (GA), particle swarm optimization (PSO), and African vultures optimization algorithm (AVOA) are utilized to estimate the optimal values of parameters. Significant improvement in absorbed solar irradiation (∼16%) is registered with optimized parameters, suggesting that benefits can be obtained if a study is performed prior to producing PTSC modules for an application.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis and Optimization of Parabolic Trough Solar Collector to Improve Its Optical Performance
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4055995
    journal fristpage31009-1
    journal lastpage31009-12
    page12
    treeJournal of Solar Energy Engineering:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian