YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluating Designer Learning and Performance in Interactive Deep Generative Design

    Source: Journal of Mechanical Design:;2023:;volume( 145 ):;issue: 005::page 51403-1
    Author:
    Chaudhari, Ashish M.
    ,
    Selva, Daniel
    DOI: 10.1115/1.4056374
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Deep generative models have shown significant promise in improving performance in design space exploration. But there is limited understanding of their interpretability, a necessity when model explanations are desired and problems are ill-defined. Interpretability involves learning design features behind design performance, called designer learning. This study explores human–machine collaboration’s effects on designer learning and design performance. We conduct an experiment (N = 42) designing mechanical metamaterials using a conditional variational autoencoder. The independent variables are: (i) the level of automation of design synthesis, e.g., manual (where the user manually manipulates design variables), manual feature-based (where the user manipulates the weights of the features learned by the encoder), and semi-automated feature-based (where the agent generates a local design based on a start design and user-selected step size); and (ii) feature semanticity, e.g., meaningful versus abstract features. We assess feature-specific learning using item response theory and design performance using utopia distance and hypervolume improvement. The results suggest that design performance depends on the subjects’ feature-specific knowledge, emphasizing the precursory role of learning. The semi-automated synthesis locally improves the utopia distance. Still, it does not result in higher global hypervolume improvement compared to manual design synthesis and reduced designer learning compared to manual feature-based synthesis. The subjects learn semantic features better than abstract features only when design performance is sensitive to them. Potential cognitive constructs influencing learning in human–machine collaborative settings are discussed, such as cognitive load and recognition heuristics.
    • Download: (909.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluating Designer Learning and Performance in Interactive Deep Generative Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292383
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorChaudhari, Ashish M.
    contributor authorSelva, Daniel
    date accessioned2023-08-16T18:43:21Z
    date available2023-08-16T18:43:21Z
    date copyright1/10/2023 12:00:00 AM
    date issued2023
    identifier issn1050-0472
    identifier othermd_145_5_051403.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292383
    description abstractDeep generative models have shown significant promise in improving performance in design space exploration. But there is limited understanding of their interpretability, a necessity when model explanations are desired and problems are ill-defined. Interpretability involves learning design features behind design performance, called designer learning. This study explores human–machine collaboration’s effects on designer learning and design performance. We conduct an experiment (N = 42) designing mechanical metamaterials using a conditional variational autoencoder. The independent variables are: (i) the level of automation of design synthesis, e.g., manual (where the user manually manipulates design variables), manual feature-based (where the user manipulates the weights of the features learned by the encoder), and semi-automated feature-based (where the agent generates a local design based on a start design and user-selected step size); and (ii) feature semanticity, e.g., meaningful versus abstract features. We assess feature-specific learning using item response theory and design performance using utopia distance and hypervolume improvement. The results suggest that design performance depends on the subjects’ feature-specific knowledge, emphasizing the precursory role of learning. The semi-automated synthesis locally improves the utopia distance. Still, it does not result in higher global hypervolume improvement compared to manual design synthesis and reduced designer learning compared to manual feature-based synthesis. The subjects learn semantic features better than abstract features only when design performance is sensitive to them. Potential cognitive constructs influencing learning in human–machine collaborative settings are discussed, such as cognitive load and recognition heuristics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluating Designer Learning and Performance in Interactive Deep Generative Design
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4056374
    journal fristpage51403-1
    journal lastpage51403-12
    page12
    treeJournal of Mechanical Design:;2023:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian