YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Mechanics Difference Between the Outer Torus and Inner Torus

    Source: Journal of Applied Mechanics:;2023:;volume( 090 ):;issue: 007::page 71012-1
    Author:
    Sun, Bo-Hua
    ,
    Song, Guang-Kai
    DOI: 10.1115/1.4062136
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The formulation used by the most of studies on elastic torus are either Reissner’s mixed formulation or Novozhilov’s complex-form one; however, for vibration and some displacement boundary-related problem of torus, those formulations face a great challenge. It is highly demanded to have a displacement-type formulation for torus. In this article, we will carry on the first author’s previous work (Sun, 2010, “Closed-Form Solution of Axisymmetric Slender Elastic Toroidal Shells,” J. Eng. Mech., 136, pp. 1281–1288.), and with the help of our own maple codes, we are able to simulate some typical problems of torus. The numerical results are verified by both finite element analysis and H. Reissner’s formulation. Our investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio. The analysis of a torus must be done by using the bending theory of a shell instead of membrane theory of shells, and also reveal that the inner torus is stronger than outer torus due to their Gaussian curvature. One of the most interesting discovery is that the crowns of a torus, the turning point of the Gaussian curvature at ϕ = 0, π, are the line where the mechanics response of inner and outer torus is almost separated.
    • Download: (1.565Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Mechanics Difference Between the Outer Torus and Inner Torus

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292058
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorSun, Bo-Hua
    contributor authorSong, Guang-Kai
    date accessioned2023-08-16T18:30:14Z
    date available2023-08-16T18:30:14Z
    date copyright4/6/2023 12:00:00 AM
    date issued2023
    identifier issn0021-8936
    identifier otherjam_90_7_071012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292058
    description abstractThe formulation used by the most of studies on elastic torus are either Reissner’s mixed formulation or Novozhilov’s complex-form one; however, for vibration and some displacement boundary-related problem of torus, those formulations face a great challenge. It is highly demanded to have a displacement-type formulation for torus. In this article, we will carry on the first author’s previous work (Sun, 2010, “Closed-Form Solution of Axisymmetric Slender Elastic Toroidal Shells,” J. Eng. Mech., 136, pp. 1281–1288.), and with the help of our own maple codes, we are able to simulate some typical problems of torus. The numerical results are verified by both finite element analysis and H. Reissner’s formulation. Our investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio. The analysis of a torus must be done by using the bending theory of a shell instead of membrane theory of shells, and also reveal that the inner torus is stronger than outer torus due to their Gaussian curvature. One of the most interesting discovery is that the crowns of a torus, the turning point of the Gaussian curvature at ϕ = 0, π, are the line where the mechanics response of inner and outer torus is almost separated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Mechanics Difference Between the Outer Torus and Inner Torus
    typeJournal Paper
    journal volume90
    journal issue7
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4062136
    journal fristpage71012-1
    journal lastpage71012-13
    page13
    treeJournal of Applied Mechanics:;2023:;volume( 090 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian