YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Smooth Crack Band Model—A Computational Paragon Based on Unorthodox Continuum Homogenization

    Source: Journal of Applied Mechanics:;2023:;volume( 090 ):;issue: 004::page 41007-1
    Author:
    Zhang, Yupeng
    ,
    Bažant, Zdeněk P.
    DOI: 10.1115/1.4056324
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorη, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0η), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0η). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias.
    • Download: (2.901Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Smooth Crack Band Model—A Computational Paragon Based on Unorthodox Continuum Homogenization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292025
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorZhang, Yupeng
    contributor authorBažant, Zdeněk P.
    date accessioned2023-08-16T18:29:08Z
    date available2023-08-16T18:29:08Z
    date copyright1/13/2023 12:00:00 AM
    date issued2023
    identifier issn0021-8936
    identifier otherjam_90_4_041007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292025
    description abstractThe crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorη, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0η), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0η). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSmooth Crack Band Model—A Computational Paragon Based on Unorthodox Continuum Homogenization
    typeJournal Paper
    journal volume90
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4056324
    journal fristpage41007-1
    journal lastpage41007-18
    page18
    treeJournal of Applied Mechanics:;2023:;volume( 090 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian