YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of a Reduced Oil Flow Rate on the Static and Dynamic Performance of a Tilting Pad Journal Bearing Running in Both the Flooded and Evacuated Conditions

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 006::page 61012-1
    Author:
    San Andrés, Luis
    ,
    Alcantar, Andy
    DOI: 10.1115/1.4056535
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The mechanical efficiency of rotating machinery improves as drag power losses in bearings reduce; hence, an operation mode that reduces the supplied flow brings immediate benefits. The paper presents measurements of the static and dynamic load performance conducted with a tilting pad journal bearing configured as flooded and evacuated, and supplied with flow rates from 150% to ∼25% (or lesser) of a nominal magnitude, proportional to shaft speed. The lubricant is ISO VG 46 oil supplied at 60 °C. The four pads bearing has center pivots with single orifice feeds for the flooded condition and spray bar injection for the evacuated condition. The shaft, 102 mm in diameter, operates at two speeds, 6 and 12 krpm (= 64 m/s surface speed), while a static load is applied between pads (LBP). The specific loads equal 345, 1034, and 2068 kPa. A reduction in flowrate makes both bearings operate more eccentrically. The evacuated bearing operates at a larger eccentricity, which for the lowest flowrate does not align with the direction of the applied load, hence displaying a sizable attitude angle. Pad subsurface temperatures are similar for both bearing configurations, although the evacuated bearing is colder by a few degrees Celsius. Drag power losses derived from the oil exit temperatures show the evacuated bearing produces up to ∼40% lesser power loss than the flooded bearing for a nominal oil flowrate. The bearings direct stiffnesses, Kxx and Kyy, increase with applied load and show little dependency on shaft speed. The evacuated bearing has lower magnitude stiffnesses, 20% or so lesser, than the flooded bearing. Damping coefficients, Cxx ∼ Cyy, reduce in magnitude as the flowrate decreases. In particular for low flow rates, 35% or lower, the evacuated bearing shows rather small (though highly uncertain) damping coefficients. For sufficiently small flow rates, operation at 6 krpm shaft speed and under the smallest applied unit load (345 kPa) produced subsynchronous shaft vibrations with a broad band spectrum (subsynchronous shaft vibrations (SSV) hash). The evacuated bearing produced SSV hash at flow rates equal to 30% or so of nominal, while the flooded bearing demanded very low flow rates (∼15% and lesser of nominal) to produce SSV hash. For both bearings, the SSV amplitude motions were rather small in amplitude. The experimental campaign demonstrates that tilting pad bearings (flooded and evacuated) can safely operate with a reduced flowrate (50% or so of nominal) to produce significant savings in drag power losses and without significant effect on the pads' metal temperatures that could affect the bearing long-term operation.
    • Download: (4.814Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of a Reduced Oil Flow Rate on the Static and Dynamic Performance of a Tilting Pad Journal Bearing Running in Both the Flooded and Evacuated Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291894
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSan Andrés, Luis
    contributor authorAlcantar, Andy
    date accessioned2023-08-16T18:23:21Z
    date available2023-08-16T18:23:21Z
    date copyright1/17/2023 12:00:00 AM
    date issued2023
    identifier issn0742-4795
    identifier othergtp_145_06_061012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291894
    description abstractThe mechanical efficiency of rotating machinery improves as drag power losses in bearings reduce; hence, an operation mode that reduces the supplied flow brings immediate benefits. The paper presents measurements of the static and dynamic load performance conducted with a tilting pad journal bearing configured as flooded and evacuated, and supplied with flow rates from 150% to ∼25% (or lesser) of a nominal magnitude, proportional to shaft speed. The lubricant is ISO VG 46 oil supplied at 60 °C. The four pads bearing has center pivots with single orifice feeds for the flooded condition and spray bar injection for the evacuated condition. The shaft, 102 mm in diameter, operates at two speeds, 6 and 12 krpm (= 64 m/s surface speed), while a static load is applied between pads (LBP). The specific loads equal 345, 1034, and 2068 kPa. A reduction in flowrate makes both bearings operate more eccentrically. The evacuated bearing operates at a larger eccentricity, which for the lowest flowrate does not align with the direction of the applied load, hence displaying a sizable attitude angle. Pad subsurface temperatures are similar for both bearing configurations, although the evacuated bearing is colder by a few degrees Celsius. Drag power losses derived from the oil exit temperatures show the evacuated bearing produces up to ∼40% lesser power loss than the flooded bearing for a nominal oil flowrate. The bearings direct stiffnesses, Kxx and Kyy, increase with applied load and show little dependency on shaft speed. The evacuated bearing has lower magnitude stiffnesses, 20% or so lesser, than the flooded bearing. Damping coefficients, Cxx ∼ Cyy, reduce in magnitude as the flowrate decreases. In particular for low flow rates, 35% or lower, the evacuated bearing shows rather small (though highly uncertain) damping coefficients. For sufficiently small flow rates, operation at 6 krpm shaft speed and under the smallest applied unit load (345 kPa) produced subsynchronous shaft vibrations with a broad band spectrum (subsynchronous shaft vibrations (SSV) hash). The evacuated bearing produced SSV hash at flow rates equal to 30% or so of nominal, while the flooded bearing demanded very low flow rates (∼15% and lesser of nominal) to produce SSV hash. For both bearings, the SSV amplitude motions were rather small in amplitude. The experimental campaign demonstrates that tilting pad bearings (flooded and evacuated) can safely operate with a reduced flowrate (50% or so of nominal) to produce significant savings in drag power losses and without significant effect on the pads' metal temperatures that could affect the bearing long-term operation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of a Reduced Oil Flow Rate on the Static and Dynamic Performance of a Tilting Pad Journal Bearing Running in Both the Flooded and Evacuated Conditions
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4056535
    journal fristpage61012-1
    journal lastpage61012-13
    page13
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian