YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation on the Leakage and Rotordynamic Characteristics for a Hole-Pattern Seal in Wet-Gas Conditions

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 006::page 61003-1
    Author:
    Fang, Zhi
    ,
    Li, Zhigang
    ,
    Li, Jun
    DOI: 10.1115/1.4056310
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: For turbomachinery working in wet-gas conditions, liquid-phase fluid may worsen the rotordynamic characteristic of an annular seal, which induces a subsynchronous vibration problem and destabilizes the rotor-bearing system. The hole-pattern seal, demonstrated as effective to eliminate synchronous or subsynchronous vibrations for gas turbomachinery, is an ideal seal scheme to increase rotor stability and liquid tolerance capability of wet-gas turbomachinery. In this paper, the leakage and rotordynamic characteristics of a hole-pattern seal are numerically investigated under wet-gas conditions, using a three-dimensional transient CFD-based perturbation method. The accuracy and reliability of the present numerical method are demonstrated based on published experimental data. The rotordynamic force coefficients are presented and compared for the wet-gas hole-pattern seal with various inlet liquid volume fractions (LVF = 0%–20%), rotor speeds (ω = 0–20 krpm), inlet preswirl ratios (Sr = −0.2–0.5), and pressure ratios (Pr = 0.3–0.7). Numerical results show that the hole-pattern seal possesses desired tolerance capability for high inlet liquid volume fraction (LVF) of up to 20%. With inlet LVF increasing from 0 to 20%, the effective damping of the hole-pattern seal increases by about 50%, suggesting an improvement in rotor stability. The leakage flow rate of the oil-air mixture increases by 97.5%, combined with the sharply increasing oil leakage flow rate (by 636%) and decreasing air leakage flow rate (by 40%). The increasing rotor speed and inlet preswirl ratio both result in an obvious increase (by 50%) in the cross-coupled stiffness, yielding a smaller effective damping and worse rotor stability. With the increase in pressure ratio, all the rotordynamic force coefficients show a weaker frequency dependency and smaller magnitudes. The swirl velocity in the seal clearance can cause an accumulation of the liquid component in the hole cavities. With the increase of swirl velocity, more liquid component accumulates in the hole cavities, and the main accumulation position gradually moves upstream.
    • Download: (5.221Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation on the Leakage and Rotordynamic Characteristics for a Hole-Pattern Seal in Wet-Gas Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291890
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorFang, Zhi
    contributor authorLi, Zhigang
    contributor authorLi, Jun
    date accessioned2023-08-16T18:23:12Z
    date available2023-08-16T18:23:12Z
    date copyright1/13/2023 12:00:00 AM
    date issued2023
    identifier issn0742-4795
    identifier othergtp_145_06_061003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291890
    description abstractFor turbomachinery working in wet-gas conditions, liquid-phase fluid may worsen the rotordynamic characteristic of an annular seal, which induces a subsynchronous vibration problem and destabilizes the rotor-bearing system. The hole-pattern seal, demonstrated as effective to eliminate synchronous or subsynchronous vibrations for gas turbomachinery, is an ideal seal scheme to increase rotor stability and liquid tolerance capability of wet-gas turbomachinery. In this paper, the leakage and rotordynamic characteristics of a hole-pattern seal are numerically investigated under wet-gas conditions, using a three-dimensional transient CFD-based perturbation method. The accuracy and reliability of the present numerical method are demonstrated based on published experimental data. The rotordynamic force coefficients are presented and compared for the wet-gas hole-pattern seal with various inlet liquid volume fractions (LVF = 0%–20%), rotor speeds (ω = 0–20 krpm), inlet preswirl ratios (Sr = −0.2–0.5), and pressure ratios (Pr = 0.3–0.7). Numerical results show that the hole-pattern seal possesses desired tolerance capability for high inlet liquid volume fraction (LVF) of up to 20%. With inlet LVF increasing from 0 to 20%, the effective damping of the hole-pattern seal increases by about 50%, suggesting an improvement in rotor stability. The leakage flow rate of the oil-air mixture increases by 97.5%, combined with the sharply increasing oil leakage flow rate (by 636%) and decreasing air leakage flow rate (by 40%). The increasing rotor speed and inlet preswirl ratio both result in an obvious increase (by 50%) in the cross-coupled stiffness, yielding a smaller effective damping and worse rotor stability. With the increase in pressure ratio, all the rotordynamic force coefficients show a weaker frequency dependency and smaller magnitudes. The swirl velocity in the seal clearance can cause an accumulation of the liquid component in the hole cavities. With the increase of swirl velocity, more liquid component accumulates in the hole cavities, and the main accumulation position gradually moves upstream.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation on the Leakage and Rotordynamic Characteristics for a Hole-Pattern Seal in Wet-Gas Conditions
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4056310
    journal fristpage61003-1
    journal lastpage61003-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian