YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Demonstration of Natural Gas and Hydrogen Cocombustion in an Industrial Gas Turbine

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 004::page 41007-1
    Author:
    Laget, Hannes
    ,
    Griebel, Peter
    ,
    Gooren, Luc
    ,
    Hampp, Fabian
    ,
    Jouret, Nicolas
    ,
    Lammel, Oliver
    DOI: 10.1115/1.4056046
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hydrogen cofiring in a gas turbine is believed to cover an energy transition pathway with green hydrogen as a driver to lower the carbon footprint of existing thermal power generation or cogeneration plants through the gradual increase of hydrogen injection in the existing natural gas grid. Today there is limited operational experience on cocombustion of hydrogen and natural gas in an existing gas turbine in an industrial environment. The ENGIE owned Siemens SGT-600 (Alstom legacy GT10B) 24 MW industrial gas turbine in the port of Antwerp (Belgium) was selected as a demonstrator for cofiring natural gas with hydrogen as it enables ENGIE to perform tests at higher H2 contents (up to 25 vol. %) on a representative turbine with limited hydrogen volume flow (one truck load at a time). Several challenges like increasing risk of flame flashback due to the enhanced turbulent flame speed, avoiding higher NOx emissions due to an increase of local flame temperature, supply and homogeneous mixing of hydrogen with natural gas as well as safety aspects have to be addressed when dealing with hydrogen fuel blends. In order to limit the risks of the industrial gas turbine testing a dual step approach was taken. ENGIE teamed up with the German Aerospace Center (DLR), Institute of Combustion Technology in Stuttgart to perform in a first step scaled-burner tests at gas turbine relevant operating conditions in their high-pressure combustor rig. In these tests the onset of flashback as well as the combustor characteristics with respect to burner wall temperatures, emissions and combustion dynamics were investigated for base load and part load conditions, both for pure natural gas and various natural gas and hydrogen blends. For H2 < 30 vol. % only minor effects on flame position and flame shape (analyzed based on OH* chemiluminescence images) and NOx emission were found. For higher hydrogen contents the flame position moved upstream and a more compact shape was observed. For the investigated H2 contents no flashback event was observed. However, thermo acoustics are strongly affected by hydrogen addition. In general, the scaled-burner tests were encouraging and enabled the second step, the exploration of hydrogen limits of the second generation dry low emissions burner installed in the engine in Antwerp. To inject the hydrogen into the industrial gas turbine, a hydrogen supply line was developed and installed next to the gas turbine. All tests were performed on the existing gas turbine hardware without any modification. A test campaign of several operational tests at base and part load with hydrogen variation up to 25 vol. % has been successfully performed where the gas composition, emissions, combustion dynamics and operational parameters are actively monitored in order to assess the impact of hydrogen on performance. Moreover, the impact of the hydrogen addition on the flame stability has been further assessed through the combustion tuning. The whole test campaign has been executed while the gas turbine stayed online, with no impact to the industrial steam customer. It has been proved that cofiring of up to 10% could be achieved with no adverse effects on the performance of the machine. Stable operation has been observed up to 25 vol. % hydrogen cocombustion, but with trespassing the local emission limits.
    • Download: (2.667Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Demonstration of Natural Gas and Hydrogen Cocombustion in an Industrial Gas Turbine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291861
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLaget, Hannes
    contributor authorGriebel, Peter
    contributor authorGooren, Luc
    contributor authorHampp, Fabian
    contributor authorJouret, Nicolas
    contributor authorLammel, Oliver
    date accessioned2023-08-16T18:22:01Z
    date available2023-08-16T18:22:01Z
    date copyright12/8/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_145_04_041007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291861
    description abstractHydrogen cofiring in a gas turbine is believed to cover an energy transition pathway with green hydrogen as a driver to lower the carbon footprint of existing thermal power generation or cogeneration plants through the gradual increase of hydrogen injection in the existing natural gas grid. Today there is limited operational experience on cocombustion of hydrogen and natural gas in an existing gas turbine in an industrial environment. The ENGIE owned Siemens SGT-600 (Alstom legacy GT10B) 24 MW industrial gas turbine in the port of Antwerp (Belgium) was selected as a demonstrator for cofiring natural gas with hydrogen as it enables ENGIE to perform tests at higher H2 contents (up to 25 vol. %) on a representative turbine with limited hydrogen volume flow (one truck load at a time). Several challenges like increasing risk of flame flashback due to the enhanced turbulent flame speed, avoiding higher NOx emissions due to an increase of local flame temperature, supply and homogeneous mixing of hydrogen with natural gas as well as safety aspects have to be addressed when dealing with hydrogen fuel blends. In order to limit the risks of the industrial gas turbine testing a dual step approach was taken. ENGIE teamed up with the German Aerospace Center (DLR), Institute of Combustion Technology in Stuttgart to perform in a first step scaled-burner tests at gas turbine relevant operating conditions in their high-pressure combustor rig. In these tests the onset of flashback as well as the combustor characteristics with respect to burner wall temperatures, emissions and combustion dynamics were investigated for base load and part load conditions, both for pure natural gas and various natural gas and hydrogen blends. For H2 < 30 vol. % only minor effects on flame position and flame shape (analyzed based on OH* chemiluminescence images) and NOx emission were found. For higher hydrogen contents the flame position moved upstream and a more compact shape was observed. For the investigated H2 contents no flashback event was observed. However, thermo acoustics are strongly affected by hydrogen addition. In general, the scaled-burner tests were encouraging and enabled the second step, the exploration of hydrogen limits of the second generation dry low emissions burner installed in the engine in Antwerp. To inject the hydrogen into the industrial gas turbine, a hydrogen supply line was developed and installed next to the gas turbine. All tests were performed on the existing gas turbine hardware without any modification. A test campaign of several operational tests at base and part load with hydrogen variation up to 25 vol. % has been successfully performed where the gas composition, emissions, combustion dynamics and operational parameters are actively monitored in order to assess the impact of hydrogen on performance. Moreover, the impact of the hydrogen addition on the flame stability has been further assessed through the combustion tuning. The whole test campaign has been executed while the gas turbine stayed online, with no impact to the industrial steam customer. It has been proved that cofiring of up to 10% could be achieved with no adverse effects on the performance of the machine. Stable operation has been observed up to 25 vol. % hydrogen cocombustion, but with trespassing the local emission limits.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDemonstration of Natural Gas and Hydrogen Cocombustion in an Industrial Gas Turbine
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4056046
    journal fristpage41007-1
    journal lastpage41007-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian