YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Static and Rotordynamic Characteristics for Three Types of Impeller Front Seals in a Liquid Oxygen Turbopump

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003::page 31025-1
    Author:
    Jin, Zhihong
    ,
    Mao, Kai
    ,
    Li, Zhigang
    ,
    Li, Jun
    DOI: 10.1115/1.4055351
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Annular seals are widely used to minimize the leakage, and improve efficiency and rotordynamic stability in turbomachinery. In a liquid oxygen turbopump, the operating conditions of annular seals are harsher with the high-pressure cryogenic propellant. Researches show that the primary leakage of a liquid oxygen turbopump is from the front and rear shoulder seals of the impeller. Moreover, the impeller shoulder seal sustains the largest pressure drop and highest swirl velocity in machine. Therefore, the shoulder seal plays an important role in rotor stability and successful full load operation of the turbopump, due to the significant seal fluid response forces. Previous literature shows that the hole-pattern seal has excellent performance in rotordynamic characteristics, and its leakage rate shows a very weak sensitive to the rotating speed. For helical-groove seal, however, the leakage shows a significant decrease with the increasing rotating speed and the roughness on stator surface can enhance the “pump effect” of helical-groove. The static and rotordynamic characteristics of annular seals with cryogenic liquid oxygen are limited in the previous literature. To make use of the advantages of both types of seals and address the sealing challenge in liquid oxygen turbopump, three types of liquid annular seals were designed for the front shoulder seal of a liquid oxygen turbopump, which include a hole-pattern seal (HPS), a double helical-groove seal (DHG), and a hybrid damper seal (HDS, with hole-pattern on stator and helical-groove on rotor). Computational fluid dynamics (CFD), as an important method to solve fluid dynamic problems, has been widely used to solve fluid governing equations. To assess and compare the leakage and rotordynamic characteristics of the present three types of annular seals under the liquid oxygen medium, a steady three-dimensional CFD method was developed to predict the seal leakage, based on the Frozen Rotor interface model. A transient three-dimensional CFD-based perturbation method was also proposed to predict the seal rotordynamic characteristics, based on the subdomain method, mesh deformation technique, and multiple-frequency elliptical-orbit whirling model. The accuracy and reliability of the present numerical methods were demonstrated based on the experimental data of leakage rates and rotordynamic coefficients for an experimental hole-pattern seal and an experimental helical-groove seal using water as working fluid. The leakage rate and rotordynamic coefficients of these three types of annular seals were calculated and compared under six variable load-operating conditions of a liquid oxygen turbopump, focusing on the seal leakage rate, effective stiffness, and damping. The numerical results show that compared with the traditional hole-pattern seal and helical-groove seal, the novel hybrid damper seal possesses the much less leakage flow rate and much better rotordynamic characteristics, so is a desired seal scheme for the impeller shoulder seal.
    • Download: (7.936Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Static and Rotordynamic Characteristics for Three Types of Impeller Front Seals in a Liquid Oxygen Turbopump

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291853
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorJin, Zhihong
    contributor authorMao, Kai
    contributor authorLi, Zhigang
    contributor authorLi, Jun
    date accessioned2023-08-16T18:21:34Z
    date available2023-08-16T18:21:34Z
    date copyright12/8/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_145_03_031025.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291853
    description abstractAnnular seals are widely used to minimize the leakage, and improve efficiency and rotordynamic stability in turbomachinery. In a liquid oxygen turbopump, the operating conditions of annular seals are harsher with the high-pressure cryogenic propellant. Researches show that the primary leakage of a liquid oxygen turbopump is from the front and rear shoulder seals of the impeller. Moreover, the impeller shoulder seal sustains the largest pressure drop and highest swirl velocity in machine. Therefore, the shoulder seal plays an important role in rotor stability and successful full load operation of the turbopump, due to the significant seal fluid response forces. Previous literature shows that the hole-pattern seal has excellent performance in rotordynamic characteristics, and its leakage rate shows a very weak sensitive to the rotating speed. For helical-groove seal, however, the leakage shows a significant decrease with the increasing rotating speed and the roughness on stator surface can enhance the “pump effect” of helical-groove. The static and rotordynamic characteristics of annular seals with cryogenic liquid oxygen are limited in the previous literature. To make use of the advantages of both types of seals and address the sealing challenge in liquid oxygen turbopump, three types of liquid annular seals were designed for the front shoulder seal of a liquid oxygen turbopump, which include a hole-pattern seal (HPS), a double helical-groove seal (DHG), and a hybrid damper seal (HDS, with hole-pattern on stator and helical-groove on rotor). Computational fluid dynamics (CFD), as an important method to solve fluid dynamic problems, has been widely used to solve fluid governing equations. To assess and compare the leakage and rotordynamic characteristics of the present three types of annular seals under the liquid oxygen medium, a steady three-dimensional CFD method was developed to predict the seal leakage, based on the Frozen Rotor interface model. A transient three-dimensional CFD-based perturbation method was also proposed to predict the seal rotordynamic characteristics, based on the subdomain method, mesh deformation technique, and multiple-frequency elliptical-orbit whirling model. The accuracy and reliability of the present numerical methods were demonstrated based on the experimental data of leakage rates and rotordynamic coefficients for an experimental hole-pattern seal and an experimental helical-groove seal using water as working fluid. The leakage rate and rotordynamic coefficients of these three types of annular seals were calculated and compared under six variable load-operating conditions of a liquid oxygen turbopump, focusing on the seal leakage rate, effective stiffness, and damping. The numerical results show that compared with the traditional hole-pattern seal and helical-groove seal, the novel hybrid damper seal possesses the much less leakage flow rate and much better rotordynamic characteristics, so is a desired seal scheme for the impeller shoulder seal.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comparison of Static and Rotordynamic Characteristics for Three Types of Impeller Front Seals in a Liquid Oxygen Turbopump
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055351
    journal fristpage31025-1
    journal lastpage31025-17
    page17
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian