YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measured Leakage and Rotordynamic Force Coefficients for Two Liquid Annular Seal Configurations: Smooth-Rotor/Grooved-Stator Versus Grooved-Rotor/Smooth-Stator

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003::page 31005-1
    Author:
    W. Childs, Dara
    ,
    Yang, Jing
    ,
    San Andrés, Luis
    ,
    M. Torres Rueda, Jose
    ,
    Alex Moreland, James
    DOI: 10.1115/1.4055638
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper reports and compares the experimental results of leakage and dynamic force coefficients for two liquid annular pressure seals, one having a smooth-rotor/circumferentially grooved stator (SR/GS), the other one with a circumferentially grooved rotor/smooth-stator (GR/SS). Differing only in the grooves’ location, the GR/SS seal’s geometry and operating conditions are representative of those in electrical submersible pumps (ESPs) used for oil recovery. Supplied with an ISO VG2 oil at 46 °C, both seals have the same diameter D = 102 mm, length-to-diameter ratio L/D = 0.5, and nominal land clearance Cr = 0.203 mm. The seals have 15 circumferential grooves with grooves and land lengths equal to 1.52 mm. Test variable ranges include (a) shaft speeds (ω) ranging from 2 to 8 krpm (shaft surface speed ∼ 43 m/s), and (b) pressure differences (ΔP) from 2 to 8 bar. Upstream of the test seals, three separate prerotation rings generate a range of inlet circumferential velocities (entrance swirl). Under all conditions, the GR/SS seal leaks about 10% less than the SR/GS seal. For both seals, the direct stiffnesses (KXX, KYY) have low magnitudes that drop with increasing ω; in some cases, they turn negative at 6 krpm. The GR/SS seal produces cross-coupled stiffnesses (KXY, KYX) that are ∼1.5 times larger than those for the SR/GS seal. Under the same conditions, the SR/GS seal is more stabilizing as its direct damping, and added mass coefficients are ∼ 20% larger than those for the GR/SS seal. Instability issues are likely to arise with either seal geometry because negative KXX and KYY drop a pump critical speed, aggravating the well-known destabilizing coefficients KXY and KYX. The whirl frequency ratio (WFR) combines the effects of the cross-coupled stiffness, direct damping and cross-coupled mass terms, thus providing a good basis for comparing two seals’ stability characteristics. Overall, the WFR magnitudes for the GR/SS seal are about three times higher than those for the SR/GS seal. Note that, irrespective of the inlet swirl condition, the GR/SS approaches a WFR ∼ 0.50 for operating shaft speeds greater than 4 krpm. At the lowest shaft speed (2 krpm), the WFR ≪ 0.5 for the low inlet preswirl ring, whereas WFR > 0.8 for the medium and high preswirl rings. For the SR/GS seal, the WFR ∼ 0.2 at the highest shaft speed of 6 krpm, and not affected by the inlet preswirl condition. On the other hand, at the lowest shaft speed, the WFR ranges from 0.5 to 0.75 for the SR/GS seal with medium and high preswirl rings. At this speed, the WFR = 0 with the low inlet preswirl ring. Hence, to enhance the operational stability, an effective swirl brake that could drop the inlet preswirl ratio upstream of a seal is helpful for the GR/SS seal out to 4 krpm and for the SR/GS seal out to 6 krpm.
    • Download: (3.940Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measured Leakage and Rotordynamic Force Coefficients for Two Liquid Annular Seal Configurations: Smooth-Rotor/Grooved-Stator Versus Grooved-Rotor/Smooth-Stator

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291835
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorW. Childs, Dara
    contributor authorYang, Jing
    contributor authorSan Andrés, Luis
    contributor authorM. Torres Rueda, Jose
    contributor authorAlex Moreland, James
    date accessioned2023-08-16T18:19:51Z
    date available2023-08-16T18:19:51Z
    date copyright12/5/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_145_03_031005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291835
    description abstractThis paper reports and compares the experimental results of leakage and dynamic force coefficients for two liquid annular pressure seals, one having a smooth-rotor/circumferentially grooved stator (SR/GS), the other one with a circumferentially grooved rotor/smooth-stator (GR/SS). Differing only in the grooves’ location, the GR/SS seal’s geometry and operating conditions are representative of those in electrical submersible pumps (ESPs) used for oil recovery. Supplied with an ISO VG2 oil at 46 °C, both seals have the same diameter D = 102 mm, length-to-diameter ratio L/D = 0.5, and nominal land clearance Cr = 0.203 mm. The seals have 15 circumferential grooves with grooves and land lengths equal to 1.52 mm. Test variable ranges include (a) shaft speeds (ω) ranging from 2 to 8 krpm (shaft surface speed ∼ 43 m/s), and (b) pressure differences (ΔP) from 2 to 8 bar. Upstream of the test seals, three separate prerotation rings generate a range of inlet circumferential velocities (entrance swirl). Under all conditions, the GR/SS seal leaks about 10% less than the SR/GS seal. For both seals, the direct stiffnesses (KXX, KYY) have low magnitudes that drop with increasing ω; in some cases, they turn negative at 6 krpm. The GR/SS seal produces cross-coupled stiffnesses (KXY, KYX) that are ∼1.5 times larger than those for the SR/GS seal. Under the same conditions, the SR/GS seal is more stabilizing as its direct damping, and added mass coefficients are ∼ 20% larger than those for the GR/SS seal. Instability issues are likely to arise with either seal geometry because negative KXX and KYY drop a pump critical speed, aggravating the well-known destabilizing coefficients KXY and KYX. The whirl frequency ratio (WFR) combines the effects of the cross-coupled stiffness, direct damping and cross-coupled mass terms, thus providing a good basis for comparing two seals’ stability characteristics. Overall, the WFR magnitudes for the GR/SS seal are about three times higher than those for the SR/GS seal. Note that, irrespective of the inlet swirl condition, the GR/SS approaches a WFR ∼ 0.50 for operating shaft speeds greater than 4 krpm. At the lowest shaft speed (2 krpm), the WFR ≪ 0.5 for the low inlet preswirl ring, whereas WFR > 0.8 for the medium and high preswirl rings. For the SR/GS seal, the WFR ∼ 0.2 at the highest shaft speed of 6 krpm, and not affected by the inlet preswirl condition. On the other hand, at the lowest shaft speed, the WFR ranges from 0.5 to 0.75 for the SR/GS seal with medium and high preswirl rings. At this speed, the WFR = 0 with the low inlet preswirl ring. Hence, to enhance the operational stability, an effective swirl brake that could drop the inlet preswirl ratio upstream of a seal is helpful for the GR/SS seal out to 4 krpm and for the SR/GS seal out to 6 krpm.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasured Leakage and Rotordynamic Force Coefficients for Two Liquid Annular Seal Configurations: Smooth-Rotor/Grooved-Stator Versus Grooved-Rotor/Smooth-Stator
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055638
    journal fristpage31005-1
    journal lastpage31005-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian