System-Level Assessment of a Partially Distributed Hybrid Electric Propulsion SystemSource: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 002::page 21030-1Author:Sahoo, Smruti
,
Kavvalos, Mavroudis D.
,
Diamantidou, Dimitra Eirini
,
Kyprianidis, Konstantinos G.
DOI: 10.1115/1.4055827Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Hybrid electric propulsion system-based aircraft designs are paving the path toward a future greener aviation sector and thus, have been the major focus of the aeronautical community. The fuel efficiency improvement associated to such propulsion system configurations are realized at the aircraft level. In order to assess such benefits, a radical shift in the subsystem modeling requirements and of a conceptual-level aircraft design environment are necessary. This work highlights performance model development work pertaining to different hybrid electric propulsion system components and the development of a design platform that facilitates tighter integration of different novel propulsion system disciplines at the aircraft level. Furthermore, a serial/parallel partially distributed hybrid electric propulsion system is chosen as the candidate configuration to assess the potential benefits and associated tradeoffs by conducting multidisciplinary design space exploration studies. It is established that the distributed hybrid electric configurations pose the potential for aircraft structural weight reduction benefits. The study further illustrates the impacts of onboard charging during the low thrust requirement segments, quantitatively. The provision of onboard charging lowers the potential for block fuel savings, and improvement in battery specific energy can make it more promising, which is also dependent on the hybridization power level. It is established that distributed propulsion system configurations particularly benefit from a high aspect ratio wing structure, which manifests in high hybridization power levels. A high voltage level transmission system with more efficient electrical components enhances opportunities for achieving block fuel saving benefits.
|
Show full item record
contributor author | Sahoo, Smruti | |
contributor author | Kavvalos, Mavroudis D. | |
contributor author | Diamantidou, Dimitra Eirini | |
contributor author | Kyprianidis, Konstantinos G. | |
date accessioned | 2023-08-16T18:19:34Z | |
date available | 2023-08-16T18:19:34Z | |
date copyright | 1/11/2023 12:00:00 AM | |
date issued | 2023 | |
identifier issn | 0742-4795 | |
identifier other | gtp_145_02_021030.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4291828 | |
description abstract | Hybrid electric propulsion system-based aircraft designs are paving the path toward a future greener aviation sector and thus, have been the major focus of the aeronautical community. The fuel efficiency improvement associated to such propulsion system configurations are realized at the aircraft level. In order to assess such benefits, a radical shift in the subsystem modeling requirements and of a conceptual-level aircraft design environment are necessary. This work highlights performance model development work pertaining to different hybrid electric propulsion system components and the development of a design platform that facilitates tighter integration of different novel propulsion system disciplines at the aircraft level. Furthermore, a serial/parallel partially distributed hybrid electric propulsion system is chosen as the candidate configuration to assess the potential benefits and associated tradeoffs by conducting multidisciplinary design space exploration studies. It is established that the distributed hybrid electric configurations pose the potential for aircraft structural weight reduction benefits. The study further illustrates the impacts of onboard charging during the low thrust requirement segments, quantitatively. The provision of onboard charging lowers the potential for block fuel savings, and improvement in battery specific energy can make it more promising, which is also dependent on the hybridization power level. It is established that distributed propulsion system configurations particularly benefit from a high aspect ratio wing structure, which manifests in high hybridization power levels. A high voltage level transmission system with more efficient electrical components enhances opportunities for achieving block fuel saving benefits. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | System-Level Assessment of a Partially Distributed Hybrid Electric Propulsion System | |
type | Journal Paper | |
journal volume | 145 | |
journal issue | 2 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4055827 | |
journal fristpage | 21030-1 | |
journal lastpage | 21030-15 | |
page | 15 | |
tree | Journal of Engineering for Gas Turbines and Power:;2023:;volume( 145 ):;issue: 002 | |
contenttype | Fulltext |