YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Damper-Blade Coupling Calculations Reduced to Essentials

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002::page 21016-1
    Author:
    Gastaldi, Chiara
    ,
    Gola, Muzio M.
    DOI: 10.1115/1.4055414
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To improve the numerical efficiency of the nonlinear calculations required for the dynamic response of damped turbine blades, the authors recently introduced the platform centered reduction (PCR) method which represents the platform as a rigid body subject to a single moment representing the effect of forces from adjacent dampers. The concept of a” basic cycle” is now introduced to simplify—without introducing additional approximations—the functional relationship between the moment on the platform due to the frictional forces and its angle of rotation, both of which are calculated around an axis parallel to the main axis of neck bending. It is shown that, for the first bending mode of vibration, this function completely characterizes the damper-platform assembly, such that for rotation values greater than the” base cycle,” the values of the real and imaginary components of the damper-platform flexural stiffness are obtained a priori, without having to repeat the contact cycle calculations at each amplitude change. The advantage of this approach for numerical calculations and the convenience of having a model focused on the essential aspects of the engineering problem of best coupling between damper and blade are demonstrated. Also, considering the improvements introduced, the” designer's diagram,” already proposed by these authors, is revised. The advantage lies in representing the essential, yet adequate approximation in the relationship between the maximum alternating bending stress due to vibration and the values of the excitation force on the airfoil, values each associated with a corresponding “oscillation amplitude/resonance frequency” pair.
    • Download: (1.899Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Damper-Blade Coupling Calculations Reduced to Essentials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291818
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGastaldi, Chiara
    contributor authorGola, Muzio M.
    date accessioned2023-08-16T18:19:11Z
    date available2023-08-16T18:19:11Z
    date copyright11/29/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_145_02_021016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291818
    description abstractTo improve the numerical efficiency of the nonlinear calculations required for the dynamic response of damped turbine blades, the authors recently introduced the platform centered reduction (PCR) method which represents the platform as a rigid body subject to a single moment representing the effect of forces from adjacent dampers. The concept of a” basic cycle” is now introduced to simplify—without introducing additional approximations—the functional relationship between the moment on the platform due to the frictional forces and its angle of rotation, both of which are calculated around an axis parallel to the main axis of neck bending. It is shown that, for the first bending mode of vibration, this function completely characterizes the damper-platform assembly, such that for rotation values greater than the” base cycle,” the values of the real and imaginary components of the damper-platform flexural stiffness are obtained a priori, without having to repeat the contact cycle calculations at each amplitude change. The advantage of this approach for numerical calculations and the convenience of having a model focused on the essential aspects of the engineering problem of best coupling between damper and blade are demonstrated. Also, considering the improvements introduced, the” designer's diagram,” already proposed by these authors, is revised. The advantage lies in representing the essential, yet adequate approximation in the relationship between the maximum alternating bending stress due to vibration and the values of the excitation force on the airfoil, values each associated with a corresponding “oscillation amplitude/resonance frequency” pair.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Damper-Blade Coupling Calculations Reduced to Essentials
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055414
    journal fristpage21016-1
    journal lastpage21016-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian