YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Calibration of Kinetic Parameters in the CH Chemistry Toward Accurate Prompt-NO Modelling

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002::page 21014-1
    Author:
    Durocher, Antoine
    ,
    Bourque, Gilles
    ,
    Bergthorson, Jeffrey M.
    DOI: 10.1115/1.4055789
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Significant efforts made by the gas turbine industry have helped reduce nitrogen oxides (NOx) emissions considerably. To meet and surpass the increasingly stringent regulations, accurate and robust thermochemical mechanisms are needed to help design future sub-10 ppm combustion systems. Uncertainty in kinetic modeling, however, can result in large prediction uncertainty and significant discrepancy between models that hinder the identification of promising combustors with confidence. Direct reaction rate measurements are seldom available for some reactions, especially when involving short-lived radicals such as methylidyne, CH. As the main precursor to the prompt-NO formation pathway, its large parametric uncertainty directly propagates through the nitrogen chemistry preventing accurate and precise emissions predictions. Recent independent CH concentration measurements obtained at various operating conditions are used as indirect rate measurements to perform statistical, or Bayesian, calibration. A subset of important reactions in the CH chemistry affecting peak-CH concentration is identified through uncertainty-weighted sensitivity analysis to first constrain the parametric space of this prompt-NO precursor. Spectral expansion provides the surrogate model used in the Markov-Chain Monte Carlo method to evaluate the posterior kinetic distribution. The resulting constrained CH-chemistry better captures experimental measurements while providing smaller prediction uncertainty of a similar order as the uncertainty of the measurements, which can increase the confidence in simulation results to identify promising future low-emissions configurations. For the quasi-steady-state species CH, fuel decomposition reactions leading to CH production are constrained while little impact is observed for intermediate reactions within the CH-chemistry. The reduction in prediction uncertainty results mainly from the constrained correlations between parameters which greatly limit the set of feasible reaction rate combinations. Additional independent direct and indirect measurements would be necessary to further constrain rate parameters in the CH chemistry, but this calibration demonstrates that predictions of radical species can be improved by assimilating enough data.
    • Download: (1.729Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Calibration of Kinetic Parameters in the CH Chemistry Toward Accurate Prompt-NO Modelling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291816
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDurocher, Antoine
    contributor authorBourque, Gilles
    contributor authorBergthorson, Jeffrey M.
    date accessioned2023-08-16T18:19:02Z
    date available2023-08-16T18:19:02Z
    date copyright11/29/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_145_02_021014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291816
    description abstractSignificant efforts made by the gas turbine industry have helped reduce nitrogen oxides (NOx) emissions considerably. To meet and surpass the increasingly stringent regulations, accurate and robust thermochemical mechanisms are needed to help design future sub-10 ppm combustion systems. Uncertainty in kinetic modeling, however, can result in large prediction uncertainty and significant discrepancy between models that hinder the identification of promising combustors with confidence. Direct reaction rate measurements are seldom available for some reactions, especially when involving short-lived radicals such as methylidyne, CH. As the main precursor to the prompt-NO formation pathway, its large parametric uncertainty directly propagates through the nitrogen chemistry preventing accurate and precise emissions predictions. Recent independent CH concentration measurements obtained at various operating conditions are used as indirect rate measurements to perform statistical, or Bayesian, calibration. A subset of important reactions in the CH chemistry affecting peak-CH concentration is identified through uncertainty-weighted sensitivity analysis to first constrain the parametric space of this prompt-NO precursor. Spectral expansion provides the surrogate model used in the Markov-Chain Monte Carlo method to evaluate the posterior kinetic distribution. The resulting constrained CH-chemistry better captures experimental measurements while providing smaller prediction uncertainty of a similar order as the uncertainty of the measurements, which can increase the confidence in simulation results to identify promising future low-emissions configurations. For the quasi-steady-state species CH, fuel decomposition reactions leading to CH production are constrained while little impact is observed for intermediate reactions within the CH-chemistry. The reduction in prediction uncertainty results mainly from the constrained correlations between parameters which greatly limit the set of feasible reaction rate combinations. Additional independent direct and indirect measurements would be necessary to further constrain rate parameters in the CH chemistry, but this calibration demonstrates that predictions of radical species can be improved by assimilating enough data.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBayesian Calibration of Kinetic Parameters in the CH Chemistry Toward Accurate Prompt-NO Modelling
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055789
    journal fristpage21014-1
    journal lastpage21014-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian