YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study on Fundamental Combustion Properties of Trimethyl Orthoformate: Experiments and Modeling

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002::page 21011-1
    Author:
    Ngũgĩ, John Mbũrũ
    ,
    Richter, Sandra
    ,
    Braun-Unkhoff, Marina
    ,
    Naumann, Clemens
    ,
    Riedel, Uwe
    DOI: 10.1115/1.4055828
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Trimethyl orthoformate (TMOF: HC(OCH3)3) has recently been examined as a viable biofuel. TMOF is a branched isomer of oxymethylene ether-2 (OME2) that, due to its high oxygen content and lack of direct carbon-carbon bonds, considerably reduces the formation of soot particles. To meet the challenges of a more flexible and sustainable power generation, a detailed understanding of its combustion properties is essential for its safe and efficient utilization, neat or in blends. In this work, two fundamental combustion properties of TMOF were studied: (i) Auto-ignition of TMOF/synthetic air mixtures (φ = 1.0; diluted 1:5 with N2) using the shock tube method at pressures of 1, 4, and 16 bar, and (ii) Laminar burning velocities of TMOF/air mixtures using the cone angle method at ambient and elevated pressures of 3 and 6 bar. Furthermore, the impact of TMOF addition to a gasoline surrogate (PRF90) on ignition delay times was studied using the shock tube method at φ = 1.0, 1:5 dilution with N2, T = 900–2000 K, and at 4 bar. The experimental data sets have been compared with predictions of the in-house chemical kinetic reaction mechanism (DLR concise mechanism) developed for interpreting the high-temperature combustion of a broad spectrum of different hydrocarbon fuels as well as oxygenated fuels, including TMOF. The results demonstrate that the ignition delay times of TMOF and OME2 are nearly identical for all pressures studied in the moderate-to high-temperature region. The results obtained for the blend indicate that ignition delay times of the TMOF/PRF90 blend are shorter than those of the primary reference fuel 90 (PRF90) at 4 bar. In the lean-to stoichiometric region, the results obtained for laminar burning velocities of TMOF and OME2 are similar. However, in the fuel-rich domain (φ > 1.0), laminar burning velocities for TMOF are noticeably lower, indicating a decreased reactivity. The model predictions based on the in-house model reveal a good agreement compared to the measured data within the experimental uncertainty ranges. In addition, sensitivity analyses regarding ignition delay times and laminar flame speeds were performed to better understand TMOF oxidation.
    • Download: (1.772Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study on Fundamental Combustion Properties of Trimethyl Orthoformate: Experiments and Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291813
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorNgũgĩ, John Mbũrũ
    contributor authorRichter, Sandra
    contributor authorBraun-Unkhoff, Marina
    contributor authorNaumann, Clemens
    contributor authorRiedel, Uwe
    date accessioned2023-08-16T18:18:53Z
    date available2023-08-16T18:18:53Z
    date copyright11/28/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_145_02_021011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291813
    description abstractTrimethyl orthoformate (TMOF: HC(OCH3)3) has recently been examined as a viable biofuel. TMOF is a branched isomer of oxymethylene ether-2 (OME2) that, due to its high oxygen content and lack of direct carbon-carbon bonds, considerably reduces the formation of soot particles. To meet the challenges of a more flexible and sustainable power generation, a detailed understanding of its combustion properties is essential for its safe and efficient utilization, neat or in blends. In this work, two fundamental combustion properties of TMOF were studied: (i) Auto-ignition of TMOF/synthetic air mixtures (φ = 1.0; diluted 1:5 with N2) using the shock tube method at pressures of 1, 4, and 16 bar, and (ii) Laminar burning velocities of TMOF/air mixtures using the cone angle method at ambient and elevated pressures of 3 and 6 bar. Furthermore, the impact of TMOF addition to a gasoline surrogate (PRF90) on ignition delay times was studied using the shock tube method at φ = 1.0, 1:5 dilution with N2, T = 900–2000 K, and at 4 bar. The experimental data sets have been compared with predictions of the in-house chemical kinetic reaction mechanism (DLR concise mechanism) developed for interpreting the high-temperature combustion of a broad spectrum of different hydrocarbon fuels as well as oxygenated fuels, including TMOF. The results demonstrate that the ignition delay times of TMOF and OME2 are nearly identical for all pressures studied in the moderate-to high-temperature region. The results obtained for the blend indicate that ignition delay times of the TMOF/PRF90 blend are shorter than those of the primary reference fuel 90 (PRF90) at 4 bar. In the lean-to stoichiometric region, the results obtained for laminar burning velocities of TMOF and OME2 are similar. However, in the fuel-rich domain (φ > 1.0), laminar burning velocities for TMOF are noticeably lower, indicating a decreased reactivity. The model predictions based on the in-house model reveal a good agreement compared to the measured data within the experimental uncertainty ranges. In addition, sensitivity analyses regarding ignition delay times and laminar flame speeds were performed to better understand TMOF oxidation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Study on Fundamental Combustion Properties of Trimethyl Orthoformate: Experiments and Modeling
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055828
    journal fristpage21011-1
    journal lastpage21011-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian