YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implementation of a Model Predictive Control Strategy to Regulate Temperature Inside Plug-Flow Solar Reactor With Countercurrent Flow

    Source: Journal of Thermal Science and Engineering Applications:;2022:;volume( 015 ):;issue: 002::page 21013-1
    Author:
    Alsahlani, Assaad
    ,
    Randhir, Kelvin
    ,
    Hayes, Michael
    ,
    Schimmels, Philipp
    ,
    Ozalp, Nesrin
    ,
    Klausner, James
    DOI: 10.1115/1.4056243
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Solar-driven thermochemical energy storage systems are proven to be promising energy carriers (solar fuels) to utilize solar energy by using reactive solid-state pellets. However, the production of solar fuel requires a quasi-steady-state process temperature, which represents the main challenge due to the transient nature of solar power. In this work, an adaptive model predictive controller (MPC) is presented to regulate the temperature inside a tubular solar reactor to produce solid-state solar fuel for long-term thermal storage systems. The solar reactor system consists of a vertical tube heated circumferentially over a segment of its length by concentrated solar power, and the reactive pellets (MgMn2O4) are fed from the top end and flow downwards through the heated tube. A countercurrent flowing gas supplied from the lower end interacts with flowing pellets to reduce it thermochemically at a temperature range of 1000—1500 °C. A low-order physical model was developed to simulate the dynamics of the solar reactor including the reaction kinetics, and the proposed model was validated numerically by using a 7-kW electric furnace. The numerical model then was utilized to design the MPC controller, where the control system consists of an MPC code linked to an adaptive system identification code that updates system parameters online to ensure system robustness against external disturbances (sudden change in the flow inside the reactor), model mismatches, and uncertainty. The MPC controller parameters are tuned to enhance the system performance with minimum steady-state error and overshoot. The controller is tested to track different temperature ranges between 500 °C and 1400 °C with different particles/gas mass flowrates and ramping temperature profiles. Results show that the MPC controller successfully regulated the reactor temperature within ± 1 °C of its setpoint and maintained robust performance with minimum input effort when subjected to sudden changes in the amount of flowing media and the presence of chemical reaction.
    • Download: (1.555Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implementation of a Model Predictive Control Strategy to Regulate Temperature Inside Plug-Flow Solar Reactor With Countercurrent Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291413
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorAlsahlani, Assaad
    contributor authorRandhir, Kelvin
    contributor authorHayes, Michael
    contributor authorSchimmels, Philipp
    contributor authorOzalp, Nesrin
    contributor authorKlausner, James
    date accessioned2023-08-16T18:06:07Z
    date available2023-08-16T18:06:07Z
    date copyright12/6/2022 12:00:00 AM
    date issued2022
    identifier issn1948-5085
    identifier othertsea_15_2_021013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291413
    description abstractSolar-driven thermochemical energy storage systems are proven to be promising energy carriers (solar fuels) to utilize solar energy by using reactive solid-state pellets. However, the production of solar fuel requires a quasi-steady-state process temperature, which represents the main challenge due to the transient nature of solar power. In this work, an adaptive model predictive controller (MPC) is presented to regulate the temperature inside a tubular solar reactor to produce solid-state solar fuel for long-term thermal storage systems. The solar reactor system consists of a vertical tube heated circumferentially over a segment of its length by concentrated solar power, and the reactive pellets (MgMn2O4) are fed from the top end and flow downwards through the heated tube. A countercurrent flowing gas supplied from the lower end interacts with flowing pellets to reduce it thermochemically at a temperature range of 1000—1500 °C. A low-order physical model was developed to simulate the dynamics of the solar reactor including the reaction kinetics, and the proposed model was validated numerically by using a 7-kW electric furnace. The numerical model then was utilized to design the MPC controller, where the control system consists of an MPC code linked to an adaptive system identification code that updates system parameters online to ensure system robustness against external disturbances (sudden change in the flow inside the reactor), model mismatches, and uncertainty. The MPC controller parameters are tuned to enhance the system performance with minimum steady-state error and overshoot. The controller is tested to track different temperature ranges between 500 °C and 1400 °C with different particles/gas mass flowrates and ramping temperature profiles. Results show that the MPC controller successfully regulated the reactor temperature within ± 1 °C of its setpoint and maintained robust performance with minimum input effort when subjected to sudden changes in the amount of flowing media and the presence of chemical reaction.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImplementation of a Model Predictive Control Strategy to Regulate Temperature Inside Plug-Flow Solar Reactor With Countercurrent Flow
    typeJournal Paper
    journal volume15
    journal issue2
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4056243
    journal fristpage21013-1
    journal lastpage21013-12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2022:;volume( 015 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian