Show simple item record

contributor authorKeller, Alexander Mathew;Pho, Vy;Demirer, Nazli;Darbe, Robert;Chen, Dongmei
date accessioned2023-04-06T13:04:09Z
date available2023-04-06T13:04:09Z
date copyright7/19/2022 12:00:00 AM
date issued2022
identifier issn220434
identifier otherds_144_09_091005.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289016
description abstractAccessing difficult to reach hydrocarbon reservoirs while simultaneously reducing risk and increasing efficiency demonstrates a need for improved autonomous directional control of rotary steerable systems (RSS). The inherently uncertain drilling environment presents a challenge for control algorithms and human operators alike, where model mismatch can be significant and the parameters are time varying. Parameter estimation can improve the performance of steering controllers through model adaptation as well as provide valuable information to human operators. This paper proposes the use of a Markov Chain Monte Carlo (MCMC) method to estimate timevarying model parameters in realtime using only measurements commonly obtained while drilling. The proposed method is evaluated on historical field data and its accuracy is quantified by prediction accuracy to achieve a mean absolute error of 0.68 deg over 30 m. Next, the proposed method is used to adapt the model of a model predictive controller (MPC) and its performance is compared with a static MPC in closedloop simulation of a prototypical drilling scenario. The estimator reduces tracking error of the MPC by 93.36% and produces a higher quality borehole. Finally, the utility of estimation for humanintheloop operation is explored through the design of an early warning system (EWS). The posterior distribution produced by MCMC is utilized in the EWS to predict the probability of undesirable future trajectories. By providing automatic alerts, the EWS serves as a safety mechanism that enhances operators' proficiency when monitoring several autonomously drilled wells.
publisherThe American Society of Mechanical Engineers (ASME)
titleEstimation for Predictive Control and HumanintheLoop Operation of Rotary Steerable Systems
typeJournal Paper
journal volume144
journal issue9
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.4054885
journal fristpage91005
journal lastpage9100510
page10
treeJournal of Dynamic Systems, Measurement, and Control:;2022:;volume( 144 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record