Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion ModelSource: Journal of Applied Mechanics:;2022:;volume( 089 ):;issue: 012::page 121009Author:Buehler, Markus J.
DOI: 10.1115/1.4055730Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Dynamic fracture is an important area of materials analysis, assessing the atomiclevel mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bioinspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure.
|
Collections
Show full item record
| contributor author | Buehler, Markus J. | |
| date accessioned | 2023-04-06T12:51:01Z | |
| date available | 2023-04-06T12:51:01Z | |
| date copyright | 10/6/2022 12:00:00 AM | |
| date issued | 2022 | |
| identifier issn | 218936 | |
| identifier other | jam_89_12_121009.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4288623 | |
| description abstract | Dynamic fracture is an important area of materials analysis, assessing the atomiclevel mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bioinspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model | |
| type | Journal Paper | |
| journal volume | 89 | |
| journal issue | 12 | |
| journal title | Journal of Applied Mechanics | |
| identifier doi | 10.1115/1.4055730 | |
| journal fristpage | 121009 | |
| journal lastpage | 12100911 | |
| page | 11 | |
| tree | Journal of Applied Mechanics:;2022:;volume( 089 ):;issue: 012 | |
| contenttype | Fulltext |