YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Ignition of C1–C7 Natural Gas Blends and the Effect of Hydrogen Addition in the Low and High Temperature Regimes

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 012::page 121009
    Author:
    Mohamed, A. Abd ElSabor;Bikram Sahu, Amrit;Panigrahy, Snehasish;Bourque, Gilles;Curran, Henry
    DOI: 10.1115/1.4055423
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: New ignition delay time (IDT) measurements for two natural gas (NG) blends composed of C1–C7nalkanes, NG6 (C1:60.625%, C2:20%, C3:10%, C4:5%, nC5:2.5%, nC6:1.25%, nC7:0.625%) and NG7 (C1:72.635%, C2:10%, C3:6.667%, C4:4.444%, nC5:2.965%, nC6:1.976%, nC7:1.317%) by volume with methane as the major component are presented. The measurements were recorded using a highpressure shock tube (HPST) for stoichiometric fuel in air mixtures at reflected shock pressures (p5) of 20–30 bar and at temperatures (T5) of 987–1420 K. The current results together with rapid compression machine (RCM) measurements in the literature show that higher concentrations of the higher nalkanes (C4–C7) ∼1.327% in the NG7 blend compared to the NG6 blend result in the ignition times for NG7 being almost a factor of two faster than those for NG6 at compressed temperatures of (TC) ≤ 1000 K. This is due to the low temperature chain branching reactions that occur for higher alkane oxidation kinetics in this temperature range. On the contrary, at TC > 1000 K, NG6 exhibits ∼20% faster ignition than NG7, primarily because about 12% of the methane in the NG7 blend is primarily replaced by ethane (∼10%) in NG6, which is significantly more reactive than methane at these higher temperatures. The performance of NUIGMech1.2 in simulating these data is assessed, and it can reproduce the experiments within 20% for all the conditions considered in the study. We also investigate the effect of hydrogen addition to the autoignition of these NG blends using NUIGMech1.2, which has been validated against the existing literature for natural gas/hydrogen blends. The results demonstrate that hydrogen addition has both an inhibiting and a promoting effect in the low and hightemperature regimes, respectively. Sensitivity analyses of the hydrogen/NG mixtures are performed to understand the underlying kinetics controlling these opposite ignition effects. At low temperatures, Hatom abstraction byO˙H radicals from C3 and larger fuels are the key chainbranching reactions consuming the fuel and providing the necessary fuel radicals, which undergo low temperature chemistry (LTC) leading to ignition. However, with the addition of hydrogen to the fuel mixture, the competition by H2 for O˙H radicals via the reaction H2 +  O˙H ↔ H˙ + H2O reduces the progress of the LTC of the higher hydrocarbon fuels thereby inhibiting ignition. At higher temperatures, since H˙ + O2 ↔ Ö + O˙H is the most sensitive reaction promoting reactivity, the higher concentrations of H2 in the fuel mixture lead to higher H˙ atom concentrations leading to faster ignition due to an enhanced rate of the H˙ + O2 ↔ Ö + O˙H reaction.
    • Download: (2.400Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Ignition of C1–C7 Natural Gas Blends and the Effect of Hydrogen Addition in the Low and High Temperature Regimes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288569
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMohamed, A. Abd ElSabor;Bikram Sahu, Amrit;Panigrahy, Snehasish;Bourque, Gilles;Curran, Henry
    date accessioned2023-04-06T12:49:17Z
    date available2023-04-06T12:49:17Z
    date copyright10/7/2022 12:00:00 AM
    date issued2022
    identifier issn7424795
    identifier othergtp_144_12_121009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288569
    description abstractNew ignition delay time (IDT) measurements for two natural gas (NG) blends composed of C1–C7nalkanes, NG6 (C1:60.625%, C2:20%, C3:10%, C4:5%, nC5:2.5%, nC6:1.25%, nC7:0.625%) and NG7 (C1:72.635%, C2:10%, C3:6.667%, C4:4.444%, nC5:2.965%, nC6:1.976%, nC7:1.317%) by volume with methane as the major component are presented. The measurements were recorded using a highpressure shock tube (HPST) for stoichiometric fuel in air mixtures at reflected shock pressures (p5) of 20–30 bar and at temperatures (T5) of 987–1420 K. The current results together with rapid compression machine (RCM) measurements in the literature show that higher concentrations of the higher nalkanes (C4–C7) ∼1.327% in the NG7 blend compared to the NG6 blend result in the ignition times for NG7 being almost a factor of two faster than those for NG6 at compressed temperatures of (TC) ≤ 1000 K. This is due to the low temperature chain branching reactions that occur for higher alkane oxidation kinetics in this temperature range. On the contrary, at TC > 1000 K, NG6 exhibits ∼20% faster ignition than NG7, primarily because about 12% of the methane in the NG7 blend is primarily replaced by ethane (∼10%) in NG6, which is significantly more reactive than methane at these higher temperatures. The performance of NUIGMech1.2 in simulating these data is assessed, and it can reproduce the experiments within 20% for all the conditions considered in the study. We also investigate the effect of hydrogen addition to the autoignition of these NG blends using NUIGMech1.2, which has been validated against the existing literature for natural gas/hydrogen blends. The results demonstrate that hydrogen addition has both an inhibiting and a promoting effect in the low and hightemperature regimes, respectively. Sensitivity analyses of the hydrogen/NG mixtures are performed to understand the underlying kinetics controlling these opposite ignition effects. At low temperatures, Hatom abstraction byO˙H radicals from C3 and larger fuels are the key chainbranching reactions consuming the fuel and providing the necessary fuel radicals, which undergo low temperature chemistry (LTC) leading to ignition. However, with the addition of hydrogen to the fuel mixture, the competition by H2 for O˙H radicals via the reaction H2 +  O˙H ↔ H˙ + H2O reduces the progress of the LTC of the higher hydrocarbon fuels thereby inhibiting ignition. At higher temperatures, since H˙ + O2 ↔ Ö + O˙H is the most sensitive reaction promoting reactivity, the higher concentrations of H2 in the fuel mixture lead to higher H˙ atom concentrations leading to faster ignition due to an enhanced rate of the H˙ + O2 ↔ Ö + O˙H reaction.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Ignition of C1–C7 Natural Gas Blends and the Effect of Hydrogen Addition in the Low and High Temperature Regimes
    typeJournal Paper
    journal volume144
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055423
    journal fristpage121009
    journal lastpage1210098
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian