YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Overall Pressure Loss and Heat Transfer Performance of Additively Manufactured Offset Strip Fins Used in Compact Heat Exchangers

    Source: Journal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 012::page 120902
    Author:
    Saltzman, David;Lynch, Stephen
    DOI: 10.1115/1.4053929
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Preliminary heat exchanger design relies heavily on correlations for overall heat transfer and pressure drop performance, particularly for heat transfer augmentation features such as fins. Extensive work has been performed by the research community to develop these correlations for the numerous designs. However, with the new technology of metal additive manufacturing and the resultant surface roughness, the traditional correlations and design considerations related to performance need to be adjusted. As a result, two metal additively manufactured offset strip fin heat exchanger geometries with different fin spacing are studied for heat transfer and pressure drop performance and compared with traditional correlations. Deviations between the additively manufactured geometries and previous correlations for smooth fins are found and are further amplified as the surface roughness-to-hydraulic diameter ratio is increased. Furthermore, the surface roughness from the additive process results in a constant friction factor behavior at high Reynolds numbers, which is unlike behavior observed for conventionally manufactured fins. Considerations for both the laminar and turbulent flow regimes are needed for correct performance prediction. A final offset strip fin geometry with a change in the fin spacing every third of the way through the flow path is tested. This study found that the orientation of fin spacing, wider spaced to tightly spaced or tightly spaced to wider spaced, did not have a significant effect on pressure drop or heat transfer. However, the study found a method for predicting the performance which will become important as additive manufacturing increases the complexity of heat exchanger designs.
    • Download: (1.522Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Overall Pressure Loss and Heat Transfer Performance of Additively Manufactured Offset Strip Fins Used in Compact Heat Exchangers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288432
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorSaltzman, David;Lynch, Stephen
    date accessioned2022-12-27T23:20:51Z
    date available2022-12-27T23:20:51Z
    date copyright8/24/2022 12:00:00 AM
    date issued2022
    identifier issn1948-5085
    identifier othertsea_14_12_120902.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288432
    description abstractPreliminary heat exchanger design relies heavily on correlations for overall heat transfer and pressure drop performance, particularly for heat transfer augmentation features such as fins. Extensive work has been performed by the research community to develop these correlations for the numerous designs. However, with the new technology of metal additive manufacturing and the resultant surface roughness, the traditional correlations and design considerations related to performance need to be adjusted. As a result, two metal additively manufactured offset strip fin heat exchanger geometries with different fin spacing are studied for heat transfer and pressure drop performance and compared with traditional correlations. Deviations between the additively manufactured geometries and previous correlations for smooth fins are found and are further amplified as the surface roughness-to-hydraulic diameter ratio is increased. Furthermore, the surface roughness from the additive process results in a constant friction factor behavior at high Reynolds numbers, which is unlike behavior observed for conventionally manufactured fins. Considerations for both the laminar and turbulent flow regimes are needed for correct performance prediction. A final offset strip fin geometry with a change in the fin spacing every third of the way through the flow path is tested. This study found that the orientation of fin spacing, wider spaced to tightly spaced or tightly spaced to wider spaced, did not have a significant effect on pressure drop or heat transfer. However, the study found a method for predicting the performance which will become important as additive manufacturing increases the complexity of heat exchanger designs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOverall Pressure Loss and Heat Transfer Performance of Additively Manufactured Offset Strip Fins Used in Compact Heat Exchangers
    typeJournal Paper
    journal volume14
    journal issue12
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4053929
    journal fristpage120902
    journal lastpage120902_12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian