YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radial and Axial Displacement of the Initially-Tensioned Orthotropic Arterial Wall Under the Influence of Harmonics and Wave Reflection

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2022:;volume( 005 ):;issue: 004::page 41007
    Author:
    Hao, Zhili
    DOI: 10.1115/1.4054883
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively.
    • Download: (1.021Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radial and Axial Displacement of the Initially-Tensioned Orthotropic Arterial Wall Under the Influence of Harmonics and Wave Reflection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288199
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorHao, Zhili
    date accessioned2022-12-27T23:14:40Z
    date available2022-12-27T23:14:40Z
    date copyright7/19/2022 12:00:00 AM
    date issued2022
    identifier issn2572-7958
    identifier otherjesmdt_005_04_041007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288199
    description abstractThis study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRadial and Axial Displacement of the Initially-Tensioned Orthotropic Arterial Wall Under the Influence of Harmonics and Wave Reflection
    typeJournal Paper
    journal volume5
    journal issue4
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4054883
    journal fristpage41007
    journal lastpage41007_11
    page11
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2022:;volume( 005 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian