YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Forced Response System Identification of Full Aero-Engine Rotordynamic Systems for Prognostics and Diagnostics

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 010::page 101008
    Author:
    Hur, I.;Spakovszky, Z. S.
    DOI: 10.1115/1.4055216
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A first-of-its-kind forced-response system identification approach is introduced to measure rotordynamic damping of shaft modes in a full gas turbine aero-engine. The approach involves forced-response modal analysis in which the rotordynamic system is excited with an external shaker, and engine modal characteristics are extracted from rotor shaft response signals. A reduced-order modeling framework capturing full-engine dynamics and coupling between rotor shafts and support static structure was developed and implemented in a Pratt & Whitney Canada PW615 Turbofan engine. The framework was used to guide the design of forced-response system identification experiments. The design study shows that two orthogonal shakers are required to excite both forward- and backward-whirling shaft modes and that excessive forcing amplitudes that produce whirl over 0.4 of journal eccentricity ratio can yield up to 12% lower response magnitudes due to nonlinear bearing characteristics. A statistical analysis of virtual experiments under real engine operating conditions demonstrates feasibility and robustness of the approach, measuring rotordynamic damping for key shaft modes with an uncertainty of up to 15%. General applicability of the approach with similar error levels is suggested for multispool multiframe aero-engine architectures. Guidelines for experimental setup, data acquisition, and processing are established for full-engine forced-response system identification experiments. The new capability shows promise in supporting aero-engine diagnostics and prognostics to improve the life cycle operation of commercial and military engines.
    • Download: (6.051Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Forced Response System Identification of Full Aero-Engine Rotordynamic Systems for Prognostics and Diagnostics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288054
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHur, I.;Spakovszky, Z. S.
    date accessioned2022-12-27T23:11:12Z
    date available2022-12-27T23:11:12Z
    date copyright9/2/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_144_10_101008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288054
    description abstractA first-of-its-kind forced-response system identification approach is introduced to measure rotordynamic damping of shaft modes in a full gas turbine aero-engine. The approach involves forced-response modal analysis in which the rotordynamic system is excited with an external shaker, and engine modal characteristics are extracted from rotor shaft response signals. A reduced-order modeling framework capturing full-engine dynamics and coupling between rotor shafts and support static structure was developed and implemented in a Pratt & Whitney Canada PW615 Turbofan engine. The framework was used to guide the design of forced-response system identification experiments. The design study shows that two orthogonal shakers are required to excite both forward- and backward-whirling shaft modes and that excessive forcing amplitudes that produce whirl over 0.4 of journal eccentricity ratio can yield up to 12% lower response magnitudes due to nonlinear bearing characteristics. A statistical analysis of virtual experiments under real engine operating conditions demonstrates feasibility and robustness of the approach, measuring rotordynamic damping for key shaft modes with an uncertainty of up to 15%. General applicability of the approach with similar error levels is suggested for multispool multiframe aero-engine architectures. Guidelines for experimental setup, data acquisition, and processing are established for full-engine forced-response system identification experiments. The new capability shows promise in supporting aero-engine diagnostics and prognostics to improve the life cycle operation of commercial and military engines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleForced Response System Identification of Full Aero-Engine Rotordynamic Systems for Prognostics and Diagnostics
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055216
    journal fristpage101008
    journal lastpage101008_12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian