YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 009::page 91009
    Author:
    Xia, Yu;Verma, Ishan;Nakod, Pravin;Yadav, Rakesh;Orsino, Stefano;Li, Shaoping
    DOI: 10.1115/1.4055104
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A turbulent lifted H2/N2 jet flame in a vitiating coflow environment is numerically investigated, using the Flamelet generated manifold (FGM) combustion model with large eddy simulations (LES). Due to the hot vitiated H2/air coflow, the primary stabilization mechanism is the auto-ignition followed by a premixed flame. In addition to using H2 as a fuel, this flame poses two other modeling challenges: (i) the auto-ignition, which is a transient chemistry-driven phenomenon; (ii) the existence of multiple combustion regimes, e.g., diffusion at auto-ignition location but premixed in the postflame. A series of LES/FGM simulations are completed in this work by reducing the coflow temperature from 1045 K to 1000 K. The FGM model can predict the characteristics of the flame by showing a lifted flame. It also accurately predicts the trend in the flame lift-off distance with a change in the coflow temperature. The current results are compared for mixture fraction, temperature, and OH mass fraction at multiple locations, which have also been correctly captured. It is noted that for a high coflow temperature (and hence a low lift-off distance), the flame's lift-off is highly sensitive to the inlet boundary conditions and the mesh resolution near the jet entry. A relatively coarse mesh is used for all the simulations, which is generated using a careful strategy that not only resolves the jet instabilities near the fuel inlet but also keeps the overall mesh count low and allows for a large computational time step. A systematic sensitivity analysis of the computational speed is also performed. This work provides some useful guidelines for simulating the H2 diluted flames using the FGM model, which may be valuable to the gas turbine industry.
    • Download: (4.340Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288034
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorXia, Yu;Verma, Ishan;Nakod, Pravin;Yadav, Rakesh;Orsino, Stefano;Li, Shaoping
    date accessioned2022-12-27T23:10:46Z
    date available2022-12-27T23:10:46Z
    date copyright8/16/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_144_09_091009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288034
    description abstractA turbulent lifted H2/N2 jet flame in a vitiating coflow environment is numerically investigated, using the Flamelet generated manifold (FGM) combustion model with large eddy simulations (LES). Due to the hot vitiated H2/air coflow, the primary stabilization mechanism is the auto-ignition followed by a premixed flame. In addition to using H2 as a fuel, this flame poses two other modeling challenges: (i) the auto-ignition, which is a transient chemistry-driven phenomenon; (ii) the existence of multiple combustion regimes, e.g., diffusion at auto-ignition location but premixed in the postflame. A series of LES/FGM simulations are completed in this work by reducing the coflow temperature from 1045 K to 1000 K. The FGM model can predict the characteristics of the flame by showing a lifted flame. It also accurately predicts the trend in the flame lift-off distance with a change in the coflow temperature. The current results are compared for mixture fraction, temperature, and OH mass fraction at multiple locations, which have also been correctly captured. It is noted that for a high coflow temperature (and hence a low lift-off distance), the flame's lift-off is highly sensitive to the inlet boundary conditions and the mesh resolution near the jet entry. A relatively coarse mesh is used for all the simulations, which is generated using a careful strategy that not only resolves the jet instabilities near the fuel inlet but also keeps the overall mesh count low and allows for a large computational time step. A systematic sensitivity analysis of the computational speed is also performed. This work provides some useful guidelines for simulating the H2 diluted flames using the FGM model, which may be valuable to the gas turbine industry.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4055104
    journal fristpage91009
    journal lastpage91009_12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian