YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Investigation of a Bladeless Air Compressor

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 009::page 91008
    Author:
    Tiwari, Ravi Nath;Reggio, Federico;Renuke, Avinash;Pascenti, Matteo;Traverso, Alberto;Ferrari, Mario Luigi
    DOI: 10.1115/1.4054945
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study aims to investigate the reversible operation of a bladeless air expander prototype operated reversibly in compressor mode to understand the performance by numerical method and compare its results experimentally. A bladeless machine can reverse its operation by simply inverting the rotational speed. However, expander and compressor performance may differ significantly since losses are exacerbated in the compressor mode. The prototype was previously tested as an expander (experimental highest isentropic efficiency of 36.5%). In this work, the reverse mode is discussed, when the prototype is actuated as a compressor, with and without diffuser at variable rotational speeds. In compressor mode, the fluid enters through the center axially, passes radially outwards through disk gaps, and exits throughout the diffuser. The momentum transfer and pressure gain are carried out by the shear force produced on the surface of the rotating disk. An experimental/theoretical analysis focused on the pressure ratio, mass flow, and efficiency of bladeless compressor is conducted. High losses (main leakage across the rotor) were noticed during the experiments, affecting the overall Tesla compressor performance. Numerical calculations are carried out to estimate leakage losses by comparison with experimental results. It is shown that the original expander design would require specific modifications to reduce end disk leakages, which are higher in compressor mode than in expansion mode, significantly affecting the elaborated net mass flow. Improved diffuser, scroll, disk end gaps, and sealing mechanisms are discussed in order to augment overall performance of the bladeless prototype in compressor mode.
    • Download: (2.594Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Investigation of a Bladeless Air Compressor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288033
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorTiwari, Ravi Nath;Reggio, Federico;Renuke, Avinash;Pascenti, Matteo;Traverso, Alberto;Ferrari, Mario Luigi
    date accessioned2022-12-27T23:10:44Z
    date available2022-12-27T23:10:44Z
    date copyright8/16/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_144_09_091008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288033
    description abstractThis study aims to investigate the reversible operation of a bladeless air expander prototype operated reversibly in compressor mode to understand the performance by numerical method and compare its results experimentally. A bladeless machine can reverse its operation by simply inverting the rotational speed. However, expander and compressor performance may differ significantly since losses are exacerbated in the compressor mode. The prototype was previously tested as an expander (experimental highest isentropic efficiency of 36.5%). In this work, the reverse mode is discussed, when the prototype is actuated as a compressor, with and without diffuser at variable rotational speeds. In compressor mode, the fluid enters through the center axially, passes radially outwards through disk gaps, and exits throughout the diffuser. The momentum transfer and pressure gain are carried out by the shear force produced on the surface of the rotating disk. An experimental/theoretical analysis focused on the pressure ratio, mass flow, and efficiency of bladeless compressor is conducted. High losses (main leakage across the rotor) were noticed during the experiments, affecting the overall Tesla compressor performance. Numerical calculations are carried out to estimate leakage losses by comparison with experimental results. It is shown that the original expander design would require specific modifications to reduce end disk leakages, which are higher in compressor mode than in expansion mode, significantly affecting the elaborated net mass flow. Improved diffuser, scroll, disk end gaps, and sealing mechanisms are discussed in order to augment overall performance of the bladeless prototype in compressor mode.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Investigation of a Bladeless Air Compressor
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4054945
    journal fristpage91008
    journal lastpage91008_12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian