YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanics of Three-Dimensional Soft Network Materials With a Class of Bio-Inspired Designs

    Source: Journal of Applied Mechanics:;2022:;volume( 089 ):;issue: 007::page 71004-1
    Author:
    Chang
    ,
    Jiahui;Yan
    ,
    Dongjia;Liu
    ,
    Jianxing;Zhang
    ,
    Fan;Zhang
    ,
    Yihui
    DOI: 10.1115/1.4054458
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Inspired by the helix-shaped microstructures found in many collagenous tissues, a class of three-dimensional (3D) soft network materials that incorporate similar helical microstructures into periodic 3D lattices was reported recently. Owing to their high stretchability, high air permeability, defect-insensitive behavior, and capabilities of reproducing anisotropic J-shaped stress–strain curves of real biological tissues (e.g., heart muscles), these 3D soft network materials hold great promise for applications in tissue engineering and bio-integrated devices. Rapid design optimization of such soft network materials in practical applications requires a relevant mechanics model to serve as the theoretical basis. This paper introduces a nonlinear micromechanics model of soft 3D network materials with cubic and octahedral lattice topologies, grounded on the development of finite-deformation beam theory for the 3D helical microstructure (i.e., the building-block structure of 3D network materials). As verified by finite element analysis (FEA) and experimental measurements, the developed model can well predict the anisotropic J-shaped stress–strain curves and deformed configurations under large levels of uniaxial stretching. The theoretical model allows a clear understanding of different roles of microstructure parameters on the J-shaped stress–strain curve (that is characterized by the critical strain of mode transition, as well as the stress and the tangent modulus at the critical strain). Furthermore, we demonstrate the utility of the theoretical model in the design optimization of 3D soft network materials to reproduce the target isotropic/anisotropic stress–strain curves of real biological tissues.
    • Download: (2.785Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanics of Three-Dimensional Soft Network Materials With a Class of Bio-Inspired Designs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287035
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorChang
    contributor authorJiahui;Yan
    contributor authorDongjia;Liu
    contributor authorJianxing;Zhang
    contributor authorFan;Zhang
    contributor authorYihui
    date accessioned2022-08-18T12:53:10Z
    date available2022-08-18T12:53:10Z
    date copyright5/17/2022 12:00:00 AM
    date issued2022
    identifier issn0021-8936
    identifier otherjam_89_7_071004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287035
    description abstractInspired by the helix-shaped microstructures found in many collagenous tissues, a class of three-dimensional (3D) soft network materials that incorporate similar helical microstructures into periodic 3D lattices was reported recently. Owing to their high stretchability, high air permeability, defect-insensitive behavior, and capabilities of reproducing anisotropic J-shaped stress–strain curves of real biological tissues (e.g., heart muscles), these 3D soft network materials hold great promise for applications in tissue engineering and bio-integrated devices. Rapid design optimization of such soft network materials in practical applications requires a relevant mechanics model to serve as the theoretical basis. This paper introduces a nonlinear micromechanics model of soft 3D network materials with cubic and octahedral lattice topologies, grounded on the development of finite-deformation beam theory for the 3D helical microstructure (i.e., the building-block structure of 3D network materials). As verified by finite element analysis (FEA) and experimental measurements, the developed model can well predict the anisotropic J-shaped stress–strain curves and deformed configurations under large levels of uniaxial stretching. The theoretical model allows a clear understanding of different roles of microstructure parameters on the J-shaped stress–strain curve (that is characterized by the critical strain of mode transition, as well as the stress and the tangent modulus at the critical strain). Furthermore, we demonstrate the utility of the theoretical model in the design optimization of 3D soft network materials to reproduce the target isotropic/anisotropic stress–strain curves of real biological tissues.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanics of Three-Dimensional Soft Network Materials With a Class of Bio-Inspired Designs
    typeJournal Paper
    journal volume89
    journal issue7
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4054458
    journal fristpage71004-1
    journal lastpage71004-18
    page18
    treeJournal of Applied Mechanics:;2022:;volume( 089 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian