YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation and Comparative Analysis of Three Boil-Off Gas Reliquefaction Systems

    Source: Journal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 008::page 81017-1
    Author:
    Yan
    ,
    Mingyue;Pan
    ,
    Zhen;Shang
    ,
    Liyan;Zhou
    ,
    Li;Yu
    ,
    Jingxian
    DOI: 10.1115/1.4054283
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In view of the problem that the boil-off gas (BOG) generated by small liquefied natural gas (LNG) ships affects the transportation safety, three BOG reliquefaction systems are improved, which are as follows: case 1: serial nitrogen expansion reliquefaction system (N2-BOG); case 2: single mixed refrigerant reliquefaction system (SMR-BOG); and case 3: propane precooled mixed refrigerant reliquefaction system (C3MR-BOG). The basic process is simulated in aspen plus and combined with the mathematical model built up in matlab where the three cycles are optimized with the specific power consumption (SPC) as the objective function. The results show that the SPC of three cases are 0.8021 kWh/kg (LNG), 0.4150 kWh/kg (LNG), and 0.5063 kWh/kg (LNG); the coefficient of performance (COP) of cases 1, 2, and 3 are 0.20, 0.39, and 0.30; the exergy efficiency of 36.56%, 70.66%, and 57.93% along with the total product cost of 89.00 $/h, 55.73 $/h, and 77.54 $/h are achieved in Cases 1–3, respectively. In addition, the overall exergy destruction of the cycles and each equipment are discussed, and the matching of the cold and heat sources of the multistream heat exchanger in the three systems is analyzed. In conclusion, under the condition that the BOG mass flowrate is 350 kg/h, the improved SMR-BOG has advantages on thermodynamic performance and economic analysis, which makes it a better choice.
    • Download: (1.012Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation and Comparative Analysis of Three Boil-Off Gas Reliquefaction Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286951
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorYan
    contributor authorMingyue;Pan
    contributor authorZhen;Shang
    contributor authorLiyan;Zhou
    contributor authorLi;Yu
    contributor authorJingxian
    date accessioned2022-08-18T12:50:23Z
    date available2022-08-18T12:50:23Z
    date copyright5/12/2022 12:00:00 AM
    date issued2022
    identifier issn1948-5085
    identifier othertsea_14_8_081017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286951
    description abstractIn view of the problem that the boil-off gas (BOG) generated by small liquefied natural gas (LNG) ships affects the transportation safety, three BOG reliquefaction systems are improved, which are as follows: case 1: serial nitrogen expansion reliquefaction system (N2-BOG); case 2: single mixed refrigerant reliquefaction system (SMR-BOG); and case 3: propane precooled mixed refrigerant reliquefaction system (C3MR-BOG). The basic process is simulated in aspen plus and combined with the mathematical model built up in matlab where the three cycles are optimized with the specific power consumption (SPC) as the objective function. The results show that the SPC of three cases are 0.8021 kWh/kg (LNG), 0.4150 kWh/kg (LNG), and 0.5063 kWh/kg (LNG); the coefficient of performance (COP) of cases 1, 2, and 3 are 0.20, 0.39, and 0.30; the exergy efficiency of 36.56%, 70.66%, and 57.93% along with the total product cost of 89.00 $/h, 55.73 $/h, and 77.54 $/h are achieved in Cases 1–3, respectively. In addition, the overall exergy destruction of the cycles and each equipment are discussed, and the matching of the cold and heat sources of the multistream heat exchanger in the three systems is analyzed. In conclusion, under the condition that the BOG mass flowrate is 350 kg/h, the improved SMR-BOG has advantages on thermodynamic performance and economic analysis, which makes it a better choice.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Simulation and Comparative Analysis of Three Boil-Off Gas Reliquefaction Systems
    typeJournal Paper
    journal volume14
    journal issue8
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4054283
    journal fristpage81017-1
    journal lastpage81017-10
    page10
    treeJournal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian