YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Harvesting Brain Signal Using Machine Learning Methods

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2022:;volume( 005 ):;issue: 001::page 11005-1
    Author:
    Matsuno, Kevin
    ,
    Nandikolla, Vidya
    DOI: 10.1115/1.4053064
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Brain computer interface (BCI) systems are developed in the biomedical engineering fields to increase the quality of life among patients with paralysis and neurological conditions. The development of a six class BCI controller to operate a semi-autonomous mobile robotic arm is presented. The controller uses the following mental tasks: imagined left/right hand squeeze, imagined left/right foot tap, rest, and a physical jaw clench. To design a controller, the locations of active electrodes are verified, and an appropriate machine learning algorithm is determined. Three subjects, ages ranging between 22 and 27, participated in five sessions of motor imagery experiments to record their brainwaves. These recordings were analyzed using event related potential (ERP) plots and topographical maps to determine active electrodes. bcilab was used to train two, three, five, and six class BCI controllers using linear discriminant analysis (LDA) and relevance vector machine (RVM) machine learning methods. The subjects' data were used to compare the two-method's performance in terms of error rate percentage. While a two class BCI controller showed the same accuracy for both methods, the three and five class BCI controllers showed the RVM approach having a higher accuracy than the LDA approach. For the five-class controller, error rate percentage was 33.3% for LDA and 29.2% for RVM. The six class BCI controller error rate percentage for both LDA and RVM was 34.5%. While the percentage values are the same, RVM was chosen as the desired machine learning algorithm based on the trend seen in the three and five class controller performances.
    • Download: (5.570Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Harvesting Brain Signal Using Machine Learning Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285465
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorMatsuno, Kevin
    contributor authorNandikolla, Vidya
    date accessioned2022-05-08T09:41:42Z
    date available2022-05-08T09:41:42Z
    date copyright1/12/2022 12:00:00 AM
    date issued2022
    identifier issn2572-7958
    identifier otherjesmdt_005_01_011005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285465
    description abstractBrain computer interface (BCI) systems are developed in the biomedical engineering fields to increase the quality of life among patients with paralysis and neurological conditions. The development of a six class BCI controller to operate a semi-autonomous mobile robotic arm is presented. The controller uses the following mental tasks: imagined left/right hand squeeze, imagined left/right foot tap, rest, and a physical jaw clench. To design a controller, the locations of active electrodes are verified, and an appropriate machine learning algorithm is determined. Three subjects, ages ranging between 22 and 27, participated in five sessions of motor imagery experiments to record their brainwaves. These recordings were analyzed using event related potential (ERP) plots and topographical maps to determine active electrodes. bcilab was used to train two, three, five, and six class BCI controllers using linear discriminant analysis (LDA) and relevance vector machine (RVM) machine learning methods. The subjects' data were used to compare the two-method's performance in terms of error rate percentage. While a two class BCI controller showed the same accuracy for both methods, the three and five class BCI controllers showed the RVM approach having a higher accuracy than the LDA approach. For the five-class controller, error rate percentage was 33.3% for LDA and 29.2% for RVM. The six class BCI controller error rate percentage for both LDA and RVM was 34.5%. While the percentage values are the same, RVM was chosen as the desired machine learning algorithm based on the trend seen in the three and five class controller performances.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHarvesting Brain Signal Using Machine Learning Methods
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4053064
    journal fristpage11005-1
    journal lastpage11005-17
    page17
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2022:;volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian