YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sound Speed and Poisson’s Ratio Calibration of (Split) Hopkinson Bar via Iterative Dispersion Correction of Elastic Wave

    Source: Journal of Applied Mechanics:;2022:;volume( 089 ):;issue: 006::page 61007-1
    Author:
    Shin, Hyunho
    DOI: 10.1115/1.4054107
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A process of calibrating a one-dimensional sound speed (co) and Poisson’s ratio (ν) of a (split) Hopkinson bar is presented. This process consists of Fourier synthesis and iterative dispersion correction (time-domain phase shift) of the elastic pulse generated by the striker impact on a circular bar. At each iteration, a set of co and ν is assumed, and the sound speed versus frequency (cdc versus fdc) relationship under the assumed set is obtained using the Pochhammer–Chree equation solver developed herein for ground state excitation. Subsequently, each constituting wave of the overall elastic pulse is phase shifted (dispersion corrected) using the cdc–fdc relationship. The co and ν values of the bar are determined in the iteration process when the dispersion-corrected overall pulse profiles are reasonably consistent with the measured profiles at two travel distances in the bar. The observed consistency of the predicted (dispersion-corrected) wave profiles with the measured profiles is a mutually self-consistent verification of (i) the calibrated values of co and ν, and (ii) the combined theories of Fourier and Pochhammer–Chree. The contributions of the calibrated values of co and ν to contemporary bar technology are discussed, together with the physical significance of the tail part of a traveling wave according to the combined theories. A preprocessing template (in Excel®) and calibration platform (in matlab®) for the presented calibration process are openly available online in a public repository.
    • Download: (1001.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sound Speed and Poisson’s Ratio Calibration of (Split) Hopkinson Bar via Iterative Dispersion Correction of Elastic Wave

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285190
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorShin, Hyunho
    date accessioned2022-05-08T09:29:08Z
    date available2022-05-08T09:29:08Z
    date copyright4/21/2022 12:00:00 AM
    date issued2022
    identifier issn0021-8936
    identifier otherjam_89_6_061007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285190
    description abstractA process of calibrating a one-dimensional sound speed (co) and Poisson’s ratio (ν) of a (split) Hopkinson bar is presented. This process consists of Fourier synthesis and iterative dispersion correction (time-domain phase shift) of the elastic pulse generated by the striker impact on a circular bar. At each iteration, a set of co and ν is assumed, and the sound speed versus frequency (cdc versus fdc) relationship under the assumed set is obtained using the Pochhammer–Chree equation solver developed herein for ground state excitation. Subsequently, each constituting wave of the overall elastic pulse is phase shifted (dispersion corrected) using the cdc–fdc relationship. The co and ν values of the bar are determined in the iteration process when the dispersion-corrected overall pulse profiles are reasonably consistent with the measured profiles at two travel distances in the bar. The observed consistency of the predicted (dispersion-corrected) wave profiles with the measured profiles is a mutually self-consistent verification of (i) the calibrated values of co and ν, and (ii) the combined theories of Fourier and Pochhammer–Chree. The contributions of the calibrated values of co and ν to contemporary bar technology are discussed, together with the physical significance of the tail part of a traveling wave according to the combined theories. A preprocessing template (in Excel®) and calibration platform (in matlab®) for the presented calibration process are openly available online in a public repository.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSound Speed and Poisson’s Ratio Calibration of (Split) Hopkinson Bar via Iterative Dispersion Correction of Elastic Wave
    typeJournal Paper
    journal volume89
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4054107
    journal fristpage61007-1
    journal lastpage61007-12
    page12
    treeJournal of Applied Mechanics:;2022:;volume( 089 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian