YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation on Murine Femoral Mechanics

    Source: Journal of Biomechanical Engineering:;2021:;volume( 144 ):;issue: 004::page 41010-1
    Author:
    Bodnyk, Kyle A.
    ,
    Kim, Do-Gyoon
    ,
    Pan, Xueliang
    ,
    Hart, Richard T.
    DOI: 10.1115/1.4053101
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As an alternative to drug treatments, low-magnitude mechanical stimulation (LMMS) may improve skeletal health without potential side effects from drugs. LMMS has been shown to increase bone health short term in both animal and clinical studies. Long-term changes to the mechanical properties of bone from LMMS are currently unknown, so the objective of this research was to establish the methodology and preliminary results for investigating the long-term effects of whole body vibration therapy on the elastic and viscoelastic properties of bone. In this study, 10-week-old female BALB/cByJ mice were given LMMS (15 min/day, 5 days/week, 0.3 g, 90 Hz) for 8 weeks
     
    SHAM did not receive LMMS. Two sets of groups remained on study for an additional 8 or 16 weeks post-LMMS (N = 17). Micro-CT and fluorochrome histomorphology of these femurs were studied and results were published by Bodnyk et al. (2020, “The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation Therapy on Skeletal Health,” J. Biol. Eng., 14, Article No. 9.). Femoral quasi-static bending stiffness trended 4.2% increase in stiffness after 8 weeks of LMMS and 1.3% increase 8 weeks post-LMMS compared to SHAM. Damping, tan delta, and loss stiffness significantly increased by 17.6%, 16.3%, and 16.6%, respectively, at 8 weeks LMMS compared to SHAM. Finite element models of applied LMMS signal showed decreased stress in the mid-diaphyseal region at both 8-week LMMS and 8-week post-LMMS compared to SHAM. Residual mechanical changes in bone during and post-LMMS indicate that LMMS could be used to increase long-term mechanical integrity of bone.
     
    • Download: (2.151Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation on Murine Femoral Mechanics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285097
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBodnyk, Kyle A.
    contributor authorKim, Do-Gyoon
    contributor authorPan, Xueliang
    contributor authorHart, Richard T.
    date accessioned2022-05-08T09:24:12Z
    date available2022-05-08T09:24:12Z
    date copyright12/17/2021 12:00:00 AM
    date issued2021
    identifier issn0148-0731
    identifier otherbio_144_04_041010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285097
    description abstractAs an alternative to drug treatments, low-magnitude mechanical stimulation (LMMS) may improve skeletal health without potential side effects from drugs. LMMS has been shown to increase bone health short term in both animal and clinical studies. Long-term changes to the mechanical properties of bone from LMMS are currently unknown, so the objective of this research was to establish the methodology and preliminary results for investigating the long-term effects of whole body vibration therapy on the elastic and viscoelastic properties of bone. In this study, 10-week-old female BALB/cByJ mice were given LMMS (15 min/day, 5 days/week, 0.3 g, 90 Hz) for 8 weeks
    description abstractSHAM did not receive LMMS. Two sets of groups remained on study for an additional 8 or 16 weeks post-LMMS (N = 17). Micro-CT and fluorochrome histomorphology of these femurs were studied and results were published by Bodnyk et al. (2020, “The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation Therapy on Skeletal Health,” J. Biol. Eng., 14, Article No. 9.). Femoral quasi-static bending stiffness trended 4.2% increase in stiffness after 8 weeks of LMMS and 1.3% increase 8 weeks post-LMMS compared to SHAM. Damping, tan delta, and loss stiffness significantly increased by 17.6%, 16.3%, and 16.6%, respectively, at 8 weeks LMMS compared to SHAM. Finite element models of applied LMMS signal showed decreased stress in the mid-diaphyseal region at both 8-week LMMS and 8-week post-LMMS compared to SHAM. Residual mechanical changes in bone during and post-LMMS indicate that LMMS could be used to increase long-term mechanical integrity of bone.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation on Murine Femoral Mechanics
    typeJournal Paper
    journal volume144
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4053101
    journal fristpage41010-1
    journal lastpage41010-10
    page10
    treeJournal of Biomechanical Engineering:;2021:;volume( 144 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian