YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Approach for Identifying Mistuning in As-Manufactured Blisks

    Source: Journal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 005::page 51006-1
    Author:
    Kelly, Sean T.
    ,
    Lupini, Andrea
    ,
    Epureanu, Bogdan I.
    DOI: 10.1115/1.4052503
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Sector-to-sector geometry or material property variations in as-manufactured bladed disks, or blisks, can result in significantly greater vibration responses during operation compared to nominally cyclic symmetric designs. The dynamics of blisks are sensitive to these unavoidable deviations, known as mistuning, making the identification of mistuning in as-manufactured blisks necessary for accurately predicting their vibration. As in previous mistuning modeling and identification approaches, the mistuning of interest is small and is parameterized by using deviations in cantilever blade-alone frequencies. Such mistuning parameterization is popular because it can be applied through blade-to-blade stiffness deviations in computational reduced-order models used to predict blisk dynamics. Previous approaches to identify such mistuning parameters often require the identification of modal information or blade-isolation techniques such as blade detuning using masses or adding damping pads. However, modal information can be difficult to obtain accurately even in optimal bench conditions. In addition, in practice it can be difficult to isolate individual blades by restricting blade motion around the blisk or detuning individual blades through added masses due to geometric constraints. In this article, we present a method for mistuning identification using a data-driven approach based on a neural network. The network is first trained using surrogate computational data. Thus, the data-driven portion of the approach is executed using surrogate computational methods. With the trained network, mistuning in all sectors of blisks with the same nominal geometry can be identified by using a small number of forced responses and the forcing phase information from traveling-wave excitation. In this approach, no system or sector-level modal response information, restrictive blade isolation, or mass detuning are required. We additionally present a method for forcing frequency selection and response conditioning to improve identification accuracy. Validation of this approach is presented using a finite element blisk model containing stiffness mistuning within the blades to create computationally generated surrogate data. It is shown that mistuning can be predicted accurately using forced responses containing a significant amount of absolute and relative measurement noise, mimicking responses collected from experimental measurements. In addition, it is shown that mistuning can be predicted independently and accurately using different engine orders of excitation in regions of high modal density.
    • Download: (2.873Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Approach for Identifying Mistuning in As-Manufactured Blisks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285015
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKelly, Sean T.
    contributor authorLupini, Andrea
    contributor authorEpureanu, Bogdan I.
    date accessioned2022-05-08T09:20:28Z
    date available2022-05-08T09:20:28Z
    date copyright2/21/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4795
    identifier othergtp_144_05_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285015
    description abstractSector-to-sector geometry or material property variations in as-manufactured bladed disks, or blisks, can result in significantly greater vibration responses during operation compared to nominally cyclic symmetric designs. The dynamics of blisks are sensitive to these unavoidable deviations, known as mistuning, making the identification of mistuning in as-manufactured blisks necessary for accurately predicting their vibration. As in previous mistuning modeling and identification approaches, the mistuning of interest is small and is parameterized by using deviations in cantilever blade-alone frequencies. Such mistuning parameterization is popular because it can be applied through blade-to-blade stiffness deviations in computational reduced-order models used to predict blisk dynamics. Previous approaches to identify such mistuning parameters often require the identification of modal information or blade-isolation techniques such as blade detuning using masses or adding damping pads. However, modal information can be difficult to obtain accurately even in optimal bench conditions. In addition, in practice it can be difficult to isolate individual blades by restricting blade motion around the blisk or detuning individual blades through added masses due to geometric constraints. In this article, we present a method for mistuning identification using a data-driven approach based on a neural network. The network is first trained using surrogate computational data. Thus, the data-driven portion of the approach is executed using surrogate computational methods. With the trained network, mistuning in all sectors of blisks with the same nominal geometry can be identified by using a small number of forced responses and the forcing phase information from traveling-wave excitation. In this approach, no system or sector-level modal response information, restrictive blade isolation, or mass detuning are required. We additionally present a method for forcing frequency selection and response conditioning to improve identification accuracy. Validation of this approach is presented using a finite element blisk model containing stiffness mistuning within the blades to create computationally generated surrogate data. It is shown that mistuning can be predicted accurately using forced responses containing a significant amount of absolute and relative measurement noise, mimicking responses collected from experimental measurements. In addition, it is shown that mistuning can be predicted independently and accurately using different engine orders of excitation in regions of high modal density.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleData-Driven Approach for Identifying Mistuning in As-Manufactured Blisks
    typeJournal Paper
    journal volume144
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4052503
    journal fristpage51006-1
    journal lastpage51006-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian