YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Model for Tilting Pad Thrust Bearings Operating With Reduced Flow Rate—Do Benefits Outweigh Risks?

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 144 ):;issue: 002::page 21026-1
    Author:
    Koosha, Rasool
    ,
    Andrés, Luis San
    DOI: 10.1115/1.4052200
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The literature on tilting pad thrust bearings (TPTB) calls for flow reduction as an effective means to reduce drag power losses as well as oil pumping costs. However, the highest level of flow reduction a bearing can undergo while maintaining reliable operation is a key question that demands comprehensive analysis. This paper implements a model into an existing thermo-elasto-hydrodynamic (TEHD) computational analysis tool to deliver load performance predictions for TPTBs operating with reduced flow rates. For bearings supplied with either a reduced flow or an overflow conditions, a sound model for the flow and thermal energy mixing in a feed groove determines the temperature of the lubricant entering a thrust pad. Under a reduced flow condition, the analysis reduces the effective arc length of a wetted pad until matching the available flow. Predicted discharge flow temperature rise and pad subsurface temperature rise from the present model match measurements in the archival literature for an eight-pad bearing supplied with 150% to 25% of the nominal flow rate, i.e., the minimum flow that fully lubricates the bearing pads. A supply flow above nominal rate increases the bearing drag power because the lubricant enters a pad at a lower temperature, and yet has little effect on a thrust pad peak temperature rise or its minimum film thickness. A reduced flow below nominal produces areas lubricant starvation zones, and thus the minimum film thickness substantially decreases while the film and pad's surface temperature rapidly increase to produce significant thermal crowning of the pad surface. Compared to the bearing lubricated with a nominal rate, a starved flow bearing produces a larger axial stiffness and a lesser damping coefficient. A reduction in drag power with less lubricant supplied brings an immediate energy efficiency improvement to bearing operation. However, sustained long-term operation with overly warm pad temperatures could reduce the reliability of the mechanical element and its ultimate failure.
    • Download: (3.606Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Model for Tilting Pad Thrust Bearings Operating With Reduced Flow Rate—Do Benefits Outweigh Risks?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284953
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKoosha, Rasool
    contributor authorAndrés, Luis San
    date accessioned2022-05-08T09:17:45Z
    date available2022-05-08T09:17:45Z
    date copyright12/9/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_144_02_021026.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284953
    description abstractThe literature on tilting pad thrust bearings (TPTB) calls for flow reduction as an effective means to reduce drag power losses as well as oil pumping costs. However, the highest level of flow reduction a bearing can undergo while maintaining reliable operation is a key question that demands comprehensive analysis. This paper implements a model into an existing thermo-elasto-hydrodynamic (TEHD) computational analysis tool to deliver load performance predictions for TPTBs operating with reduced flow rates. For bearings supplied with either a reduced flow or an overflow conditions, a sound model for the flow and thermal energy mixing in a feed groove determines the temperature of the lubricant entering a thrust pad. Under a reduced flow condition, the analysis reduces the effective arc length of a wetted pad until matching the available flow. Predicted discharge flow temperature rise and pad subsurface temperature rise from the present model match measurements in the archival literature for an eight-pad bearing supplied with 150% to 25% of the nominal flow rate, i.e., the minimum flow that fully lubricates the bearing pads. A supply flow above nominal rate increases the bearing drag power because the lubricant enters a pad at a lower temperature, and yet has little effect on a thrust pad peak temperature rise or its minimum film thickness. A reduced flow below nominal produces areas lubricant starvation zones, and thus the minimum film thickness substantially decreases while the film and pad's surface temperature rapidly increase to produce significant thermal crowning of the pad surface. Compared to the bearing lubricated with a nominal rate, a starved flow bearing produces a larger axial stiffness and a lesser damping coefficient. A reduction in drag power with less lubricant supplied brings an immediate energy efficiency improvement to bearing operation. However, sustained long-term operation with overly warm pad temperatures could reduce the reliability of the mechanical element and its ultimate failure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Model for Tilting Pad Thrust Bearings Operating With Reduced Flow Rate—Do Benefits Outweigh Risks?
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4052200
    journal fristpage21026-1
    journal lastpage21026-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian