YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of a Centerbody on the Unsteady Flow Dynamics of a Swirl Nozzle: Intermittency of Precessing Vortex Core Oscillations

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 144 ):;issue: 002::page 21014-1
    Author:
    Gupta, Saarthak
    ,
    Shanbhogue, Santosh
    ,
    Shimura, Masayasu
    ,
    Ghoniem, Ahmed
    ,
    Hemchandra, Santosh
    DOI: 10.1115/1.4052144
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The precessing vortex core (PVC) is a self-excited flow oscillation state occurring in swirl nozzles. This is caused by the presence of a marginally unstable hydrodynamic helical mode that induces precession of the vortex breakdown bubble (VBB) around the flow axis. The PVC can impact emissions and thermoacoustic stability characteristics of combustors in various ways, as several prior studies have shown. In this paper, we examine the impact of centerbody diameter (Dc) on the PVC in a nonreacting flow in a single nozzle swirl combustor. Time-resolved high-speed stereoscopic PIV measurements are performed for combinations of two swirl numbers, S = 0.67 and 1.17 and Dc = 9.5 mm, 4.73 mm, and 0 (i.e., no centerbody). The bulk flow velocity at the nozzle exit plane is kept constant as Ub = 8 m/s for all cases (Re∼20,000). The centerbody end face lies in the nozzle exit plane. A new modal decomposition technique based on wavelet filtering and proper orthogonal decomposition provides insight into flow dynamics in terms of global modes extracted from the data. The results show that without a centerbody, a coherent PVC is present in the flow as expected. The introduction of a centerbody makes the PVC oscillations intermittent. These results suggest two routes to intermittency as follows. For S = 0.67, the VBB and centerbody wake recirculation zone regions are nominally distinct. Intermittent separation and merger due to turbulence result in PVC oscillations due to the destabilization of the hydrodynamic VBB precession mode of the flow. In the S = 1.17 case, the time averaged VBB position causes it to engulf the centerbody. In this case, the emergence of intermittent PVC oscillations is a result of the response of the flow to broadband stochastic forcing imposed on the time averaged vorticity field due to turbulence.
    • Download: (2.032Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of a Centerbody on the Unsteady Flow Dynamics of a Swirl Nozzle: Intermittency of Precessing Vortex Core Oscillations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284939
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGupta, Saarthak
    contributor authorShanbhogue, Santosh
    contributor authorShimura, Masayasu
    contributor authorGhoniem, Ahmed
    contributor authorHemchandra, Santosh
    date accessioned2022-05-08T09:17:02Z
    date available2022-05-08T09:17:02Z
    date copyright11/8/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_144_02_021014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284939
    description abstractThe precessing vortex core (PVC) is a self-excited flow oscillation state occurring in swirl nozzles. This is caused by the presence of a marginally unstable hydrodynamic helical mode that induces precession of the vortex breakdown bubble (VBB) around the flow axis. The PVC can impact emissions and thermoacoustic stability characteristics of combustors in various ways, as several prior studies have shown. In this paper, we examine the impact of centerbody diameter (Dc) on the PVC in a nonreacting flow in a single nozzle swirl combustor. Time-resolved high-speed stereoscopic PIV measurements are performed for combinations of two swirl numbers, S = 0.67 and 1.17 and Dc = 9.5 mm, 4.73 mm, and 0 (i.e., no centerbody). The bulk flow velocity at the nozzle exit plane is kept constant as Ub = 8 m/s for all cases (Re∼20,000). The centerbody end face lies in the nozzle exit plane. A new modal decomposition technique based on wavelet filtering and proper orthogonal decomposition provides insight into flow dynamics in terms of global modes extracted from the data. The results show that without a centerbody, a coherent PVC is present in the flow as expected. The introduction of a centerbody makes the PVC oscillations intermittent. These results suggest two routes to intermittency as follows. For S = 0.67, the VBB and centerbody wake recirculation zone regions are nominally distinct. Intermittent separation and merger due to turbulence result in PVC oscillations due to the destabilization of the hydrodynamic VBB precession mode of the flow. In the S = 1.17 case, the time averaged VBB position causes it to engulf the centerbody. In this case, the emergence of intermittent PVC oscillations is a result of the response of the flow to broadband stochastic forcing imposed on the time averaged vorticity field due to turbulence.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of a Centerbody on the Unsteady Flow Dynamics of a Swirl Nozzle: Intermittency of Precessing Vortex Core Oscillations
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4052144
    journal fristpage21014-1
    journal lastpage21014-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian