YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accelerated Creep Test Qualification of Creep-Resistance Using the Wilshire–Cano–Stewart Constitutive Model and Stepped Isostress Method

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 144 ):;issue: 001::page 11016-1
    Author:
    Cano, Jaime A.
    ,
    Stewart, Calvin M.
    DOI: 10.1115/1.4052205
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire–Cano–Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing is a long-term continuous process
     
    in fact, the ASME B&
     
    PV III requires that 10,000+ h of experiments must be conducted to each heat for materials employed in boilers and/or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The SSM has been developed, which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750 °C and predictions are compared to conventional creep testing data. The WCS model has proven to make long-term predictions for stress-rupture, MCSR, creep deformation, and damage in metallic materials. The SSM varies stress levels after time interval adding damage to the material, which can be tracked by the WCS model. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture, MSCR, damage, and creep deformation. The calibrated material constants are used to generate predictions of stress-rupture and are postaudit validated using the National Institute of Material Science database. Similarly, the MCSR predictions are compared from previous studies. Finally, the creep deformation predictions are compared with real data and is determined that the results are well in between the expected boundaries. Material characterization and mechanical properties can be determined at a faster rate and with a more cost-effective method. This is beneficial for multiple applications such as in additive manufacturing, composites, spacecraft, and industrial gas turbines.
     
    • Download: (1.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accelerated Creep Test Qualification of Creep-Resistance Using the Wilshire–Cano–Stewart Constitutive Model and Stepped Isostress Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284911
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorCano, Jaime A.
    contributor authorStewart, Calvin M.
    date accessioned2022-05-08T09:15:29Z
    date available2022-05-08T09:15:29Z
    date copyright10/18/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_144_01_011016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284911
    description abstractIn this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire–Cano–Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing is a long-term continuous process
    description abstractin fact, the ASME B&
    description abstractPV III requires that 10,000+ h of experiments must be conducted to each heat for materials employed in boilers and/or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The SSM has been developed, which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750 °C and predictions are compared to conventional creep testing data. The WCS model has proven to make long-term predictions for stress-rupture, MCSR, creep deformation, and damage in metallic materials. The SSM varies stress levels after time interval adding damage to the material, which can be tracked by the WCS model. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture, MSCR, damage, and creep deformation. The calibrated material constants are used to generate predictions of stress-rupture and are postaudit validated using the National Institute of Material Science database. Similarly, the MCSR predictions are compared from previous studies. Finally, the creep deformation predictions are compared with real data and is determined that the results are well in between the expected boundaries. Material characterization and mechanical properties can be determined at a faster rate and with a more cost-effective method. This is beneficial for multiple applications such as in additive manufacturing, composites, spacecraft, and industrial gas turbines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAccelerated Creep Test Qualification of Creep-Resistance Using the Wilshire–Cano–Stewart Constitutive Model and Stepped Isostress Method
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4052205
    journal fristpage11016-1
    journal lastpage11016-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian