YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Very Large Eddy Simulation of Aero-Thermal Performance in Squealer Tip Gap

    Source: Journal of Turbomachinery:;2022:;volume( 144 ):;issue: 006::page 61003-1
    Author:
    Yan, Xin
    DOI: 10.1115/1.4053173
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To improve the resolution accuracy and get deep insight into the flow structures in squealer tip gap, the very large Eddy simulation (VLES) method was implemented into the commercial computational fluid dynamics (CFD) solver with the user-defined function (UDF). Based on the published experimental data, the numerical accuracy of VLES method was validated. With the VLES method, the unsteady heat transfer coefficient distributions on the squealer tip and total pressure loss in the blade passage were computed. The influences of coherent vortex structures on aero-thermal performance in the squealer tip gap were analyzed. The results show that the Brown-Roshko vortices are the main driver for the formation of cavity vortex system. The direct impingement of pass-over leakage into the cavity is the main cause of high heat transfer area on the cavity floor near leading edge. The unsteady fluctuations of leakage rate through the tip gap reach about ±8% of the time-averaged value. The development of leakage vortex accounts for the major contribution of total pressure loss in the squealer tipped blade. Due to flow unsteadiness, the fluctuation of pitch-averaged total pressure loss coefficient induced by leakage vortex system reaches about ±30% of the time-averaged value. The unsteady fluctuation of pitch-averaged heat transfer coefficient on the cavity floor reaches about ±35% of the time-averaged value, while on the shroud surface it is only fluctuated by about ±10%.
    • Download: (5.337Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Very Large Eddy Simulation of Aero-Thermal Performance in Squealer Tip Gap

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284522
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorYan, Xin
    date accessioned2022-05-08T08:55:50Z
    date available2022-05-08T08:55:50Z
    date copyright1/28/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_144_6_061003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284522
    description abstractTo improve the resolution accuracy and get deep insight into the flow structures in squealer tip gap, the very large Eddy simulation (VLES) method was implemented into the commercial computational fluid dynamics (CFD) solver with the user-defined function (UDF). Based on the published experimental data, the numerical accuracy of VLES method was validated. With the VLES method, the unsteady heat transfer coefficient distributions on the squealer tip and total pressure loss in the blade passage were computed. The influences of coherent vortex structures on aero-thermal performance in the squealer tip gap were analyzed. The results show that the Brown-Roshko vortices are the main driver for the formation of cavity vortex system. The direct impingement of pass-over leakage into the cavity is the main cause of high heat transfer area on the cavity floor near leading edge. The unsteady fluctuations of leakage rate through the tip gap reach about ±8% of the time-averaged value. The development of leakage vortex accounts for the major contribution of total pressure loss in the squealer tipped blade. Due to flow unsteadiness, the fluctuation of pitch-averaged total pressure loss coefficient induced by leakage vortex system reaches about ±30% of the time-averaged value. The unsteady fluctuation of pitch-averaged heat transfer coefficient on the cavity floor reaches about ±35% of the time-averaged value, while on the shroud surface it is only fluctuated by about ±10%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVery Large Eddy Simulation of Aero-Thermal Performance in Squealer Tip Gap
    typeJournal Paper
    journal volume144
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4053173
    journal fristpage61003-1
    journal lastpage61003-21
    page21
    treeJournal of Turbomachinery:;2022:;volume( 144 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian