Show simple item record

contributor authorYan, Xin
date accessioned2022-05-08T08:55:50Z
date available2022-05-08T08:55:50Z
date copyright1/28/2022 12:00:00 AM
date issued2022
identifier issn0889-504X
identifier otherturbo_144_6_061003.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284522
description abstractTo improve the resolution accuracy and get deep insight into the flow structures in squealer tip gap, the very large Eddy simulation (VLES) method was implemented into the commercial computational fluid dynamics (CFD) solver with the user-defined function (UDF). Based on the published experimental data, the numerical accuracy of VLES method was validated. With the VLES method, the unsteady heat transfer coefficient distributions on the squealer tip and total pressure loss in the blade passage were computed. The influences of coherent vortex structures on aero-thermal performance in the squealer tip gap were analyzed. The results show that the Brown-Roshko vortices are the main driver for the formation of cavity vortex system. The direct impingement of pass-over leakage into the cavity is the main cause of high heat transfer area on the cavity floor near leading edge. The unsteady fluctuations of leakage rate through the tip gap reach about ±8% of the time-averaged value. The development of leakage vortex accounts for the major contribution of total pressure loss in the squealer tipped blade. Due to flow unsteadiness, the fluctuation of pitch-averaged total pressure loss coefficient induced by leakage vortex system reaches about ±30% of the time-averaged value. The unsteady fluctuation of pitch-averaged heat transfer coefficient on the cavity floor reaches about ±35% of the time-averaged value, while on the shroud surface it is only fluctuated by about ±10%.
publisherThe American Society of Mechanical Engineers (ASME)
titleVery Large Eddy Simulation of Aero-Thermal Performance in Squealer Tip Gap
typeJournal Paper
journal volume144
journal issue6
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4053173
journal fristpage61003-1
journal lastpage61003-21
page21
treeJournal of Turbomachinery:;2022:;volume( 144 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record