YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Comparison of a Microchannel Heat Sink Using Different Nano-Liquid Metal Fluid Coolant: A Numerical Study

    Source: Journal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 009::page 91014-1
    Author:
    Khan, Yasin
    ,
    Sarowar, Md Tanbir
    ,
    Mobarrat, Mahir
    ,
    Rahman, Md. Hamidur
    DOI: 10.1115/1.4054007
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article presents performance comparison between different liquid metal-based nanofluids termed as nano-liquid metal fluids in a microchannel heat sink to achieve ultimate cooling solutions without sacrificing the compact structure and heavy computing speed. The hydraulic and thermal performance of nanofluids having five different liquid metals (Ga, GaIn, EGaIn, GaSn, and EGaInSn) as base fluid and four different nanoparticles (carbon nanotube (CNT), Al2O3, Cu, and diamond) as solute are evaluated comparing with water-based nanofluids. Three-dimensional flow inside miniaturized channels are predicted using single-phase and two-phase numerical simulations. Numerical models are validated against data obtained from experimental studies from the literature. Three different grids are developed, and several element sizes were compared to obtain the grid independence. Upon evaluation, the study can point out that liquid metal-based nanofluids can generate much superior heat transport characteristics with more than 3.41 times higher heat transfer coefficient compared to conventional water-based nanofluids. GaIn–CNT combination exhibits the best thermal solution possible with a heat transfer coefficient increment of 2.68%, 17.19%, 22.16%, and 2.62% over CNT particle-based EGaIn, EGaInSn, Ga, GaSn liquid metal, respectively, for Re = 750. Considering hydraulic performance, performance evaluation criterion (PEC) has been introduced and Ga-based nanofluids are found to be most effective in this perspective. The effect on overall cooling effectiveness has also been carried out with a detailed particle concentration study. This study paves the pathway of using these extraordinary coolants in mini/microchannel heat sinks.
    • Download: (1.121Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Comparison of a Microchannel Heat Sink Using Different Nano-Liquid Metal Fluid Coolant: A Numerical Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284464
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorKhan, Yasin
    contributor authorSarowar, Md Tanbir
    contributor authorMobarrat, Mahir
    contributor authorRahman, Md. Hamidur
    date accessioned2022-05-08T08:53:15Z
    date available2022-05-08T08:53:15Z
    date copyright4/6/2022 12:00:00 AM
    date issued2022
    identifier issn1948-5085
    identifier othertsea_14_9_091014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284464
    description abstractThis article presents performance comparison between different liquid metal-based nanofluids termed as nano-liquid metal fluids in a microchannel heat sink to achieve ultimate cooling solutions without sacrificing the compact structure and heavy computing speed. The hydraulic and thermal performance of nanofluids having five different liquid metals (Ga, GaIn, EGaIn, GaSn, and EGaInSn) as base fluid and four different nanoparticles (carbon nanotube (CNT), Al2O3, Cu, and diamond) as solute are evaluated comparing with water-based nanofluids. Three-dimensional flow inside miniaturized channels are predicted using single-phase and two-phase numerical simulations. Numerical models are validated against data obtained from experimental studies from the literature. Three different grids are developed, and several element sizes were compared to obtain the grid independence. Upon evaluation, the study can point out that liquid metal-based nanofluids can generate much superior heat transport characteristics with more than 3.41 times higher heat transfer coefficient compared to conventional water-based nanofluids. GaIn–CNT combination exhibits the best thermal solution possible with a heat transfer coefficient increment of 2.68%, 17.19%, 22.16%, and 2.62% over CNT particle-based EGaIn, EGaInSn, Ga, GaSn liquid metal, respectively, for Re = 750. Considering hydraulic performance, performance evaluation criterion (PEC) has been introduced and Ga-based nanofluids are found to be most effective in this perspective. The effect on overall cooling effectiveness has also been carried out with a detailed particle concentration study. This study paves the pathway of using these extraordinary coolants in mini/microchannel heat sinks.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Comparison of a Microchannel Heat Sink Using Different Nano-Liquid Metal Fluid Coolant: A Numerical Study
    typeJournal Paper
    journal volume14
    journal issue9
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4054007
    journal fristpage91014-1
    journal lastpage91014-13
    page13
    treeJournal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian