YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multidimensional Computational Fluid Dynamics Combustion Process Modeling of a 6V150 Diesel Engine

    Source: Journal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 010::page 101009-1
    Author:
    Liu, Zhentao
    ,
    Zhang, Yu
    ,
    Fu, Jiahong
    ,
    Liu, Jinlong
    DOI: 10.1115/1.4054164
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The smart diesel program requires the engine electronic control unit to consider additional parameters, such as altitude and climatic conditions, in the mapping calibration process. A specially designed environmental simulation cabin, which can simulate environmental conditions at any longitude and dimension, would allow dynamometer testing to be performed indoors. Considering its high cost, a three-dimensional (3D) computational fluid dynamics (CFD) is needed to guide and/or complement experimental researches. As a result, the main objective of this study was to establish a 3D RANS model (i.e., reasonable computational cost and running time) that can provide in-cylinder details and predict the efficiency of a 6V150 diesel engine under varied operating conditions. A sector mesh approach was employed, considering only the compression, combustion, and expansion periods from intake valve closing to exhaust valve opening. The results indicated that the model simulated cylinder pressure agreed well with the experimental data, with relative errors of less than 6% during the primary compression, combustion, and expansion. Further, the model predicted heat release phasing was inconsistent with the experimental results, with absolute errors of less than one crank angle degree for peak pressure location, CA50, and ignition delay. In addition, the multidimensional model captured the effects of environmental pressure and temperature on spray formation (i.e., the dominant phenomenological event). Moreover, the model reasonably reproduced the effects of engine control variables on performance and emissions. All these observations demonstrated the validity of the selection and calibration of geometry, chemistry, and submodels including turbulence, spray, heat transfer, combustion, etc. Overall, the model was deemed capable of predicting combustion characteristics under extreme conditions, including high-temperature, high-cold, and high-altitude environments, which can facilitate the development of smart engines.
    • Download: (1.860Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multidimensional Computational Fluid Dynamics Combustion Process Modeling of a 6V150 Diesel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284374
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorLiu, Zhentao
    contributor authorZhang, Yu
    contributor authorFu, Jiahong
    contributor authorLiu, Jinlong
    date accessioned2022-05-08T08:48:49Z
    date available2022-05-08T08:48:49Z
    date copyright4/11/2022 12:00:00 AM
    date issued2022
    identifier issn1948-5085
    identifier othertsea_14_10_101009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284374
    description abstractThe smart diesel program requires the engine electronic control unit to consider additional parameters, such as altitude and climatic conditions, in the mapping calibration process. A specially designed environmental simulation cabin, which can simulate environmental conditions at any longitude and dimension, would allow dynamometer testing to be performed indoors. Considering its high cost, a three-dimensional (3D) computational fluid dynamics (CFD) is needed to guide and/or complement experimental researches. As a result, the main objective of this study was to establish a 3D RANS model (i.e., reasonable computational cost and running time) that can provide in-cylinder details and predict the efficiency of a 6V150 diesel engine under varied operating conditions. A sector mesh approach was employed, considering only the compression, combustion, and expansion periods from intake valve closing to exhaust valve opening. The results indicated that the model simulated cylinder pressure agreed well with the experimental data, with relative errors of less than 6% during the primary compression, combustion, and expansion. Further, the model predicted heat release phasing was inconsistent with the experimental results, with absolute errors of less than one crank angle degree for peak pressure location, CA50, and ignition delay. In addition, the multidimensional model captured the effects of environmental pressure and temperature on spray formation (i.e., the dominant phenomenological event). Moreover, the model reasonably reproduced the effects of engine control variables on performance and emissions. All these observations demonstrated the validity of the selection and calibration of geometry, chemistry, and submodels including turbulence, spray, heat transfer, combustion, etc. Overall, the model was deemed capable of predicting combustion characteristics under extreme conditions, including high-temperature, high-cold, and high-altitude environments, which can facilitate the development of smart engines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMultidimensional Computational Fluid Dynamics Combustion Process Modeling of a 6V150 Diesel Engine
    typeJournal Paper
    journal volume14
    journal issue10
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4054164
    journal fristpage101009-1
    journal lastpage101009-11
    page11
    treeJournal of Thermal Science and Engineering Applications:;2022:;volume( 014 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian